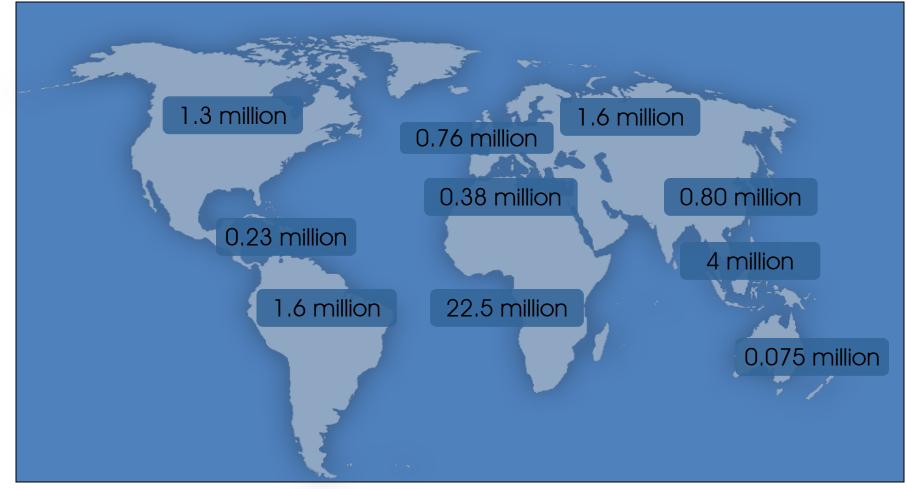
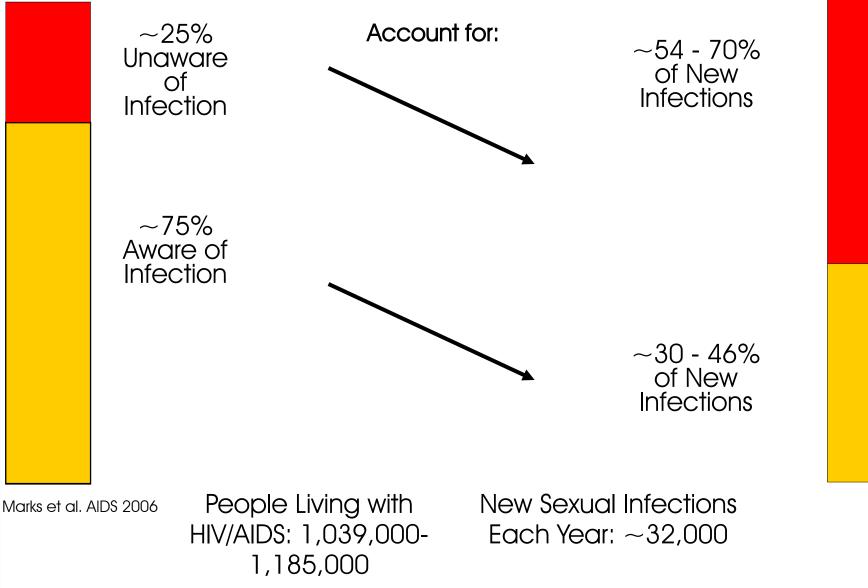
The Changing Landscape of HIV Testing

Patricia Slev, PhD, D(ABCC) June 21, 2012

• The speaker has nothing to disclose


Objectives

- Explain the principles and benefits of Ag/Ab combination HIV screening assays.
- Describe the new CDC HIV diagnostic algorithm.
- Understand the limitations of Western blot confirmation.
- Use screening and follow-up confirmatory tests appropriately.


Global HIV Epidemiology

WHO, UNAIDS. 07 AIDS epidemic update.http://data.unaids.org/pub/EPISlides/2007/2007_epiupdate_en.pdf.

Adapted from Siemens slide

Awareness of Serostatus Among People with HIV and Estimates of STD Transmission (U<u>S)</u>

CDC: Revised HIV Screening Recommendations

Morbidity and Mortality Weekly Report

Recommendations and Reports

September 22, 2006 / Vol. 55 / No. RR-14

Revised Recommendations for HIV Testing of Adults, Adolescents, and Pregnant Women in Health-Care Settings

2006 CDC Guidelines "Universal Testing"

• Routine HIV

voluntary, not based on risk

• Opt-Out

option to decline, general consent for care includes HIV testing

- Prevention Counseling
 no longer required
- Population

13-64 years old

• Venue

inpatient services, ER, urgent care, STD clinics, substance abuse and correctional facilities

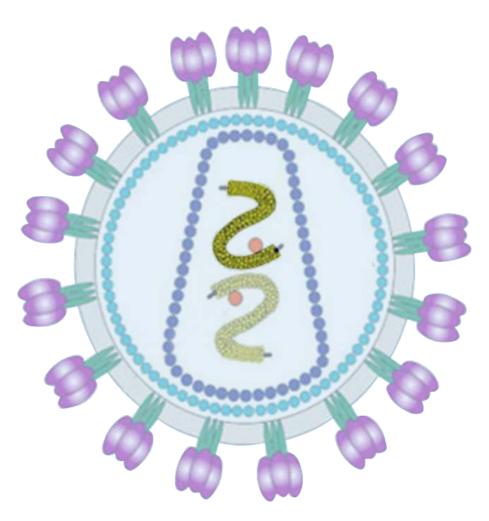
HIV Screening: American College of Physicians-2009

CLINICAL GUIDELINES

Screening for HIV in Health Care Settings: A Guidance Statement From the American College of Physicians and HIV Medicine Association

Amir QaseemMD, PhD, MHA; VincenzaSnow, MD; Paul Shekelle, MD; Robert Hopkins Jr., MD; and DouglasK. Owens, MD, MS, for the Clinical Efficacy Assessments ubcommittee of the AmericanCollege Physicians*

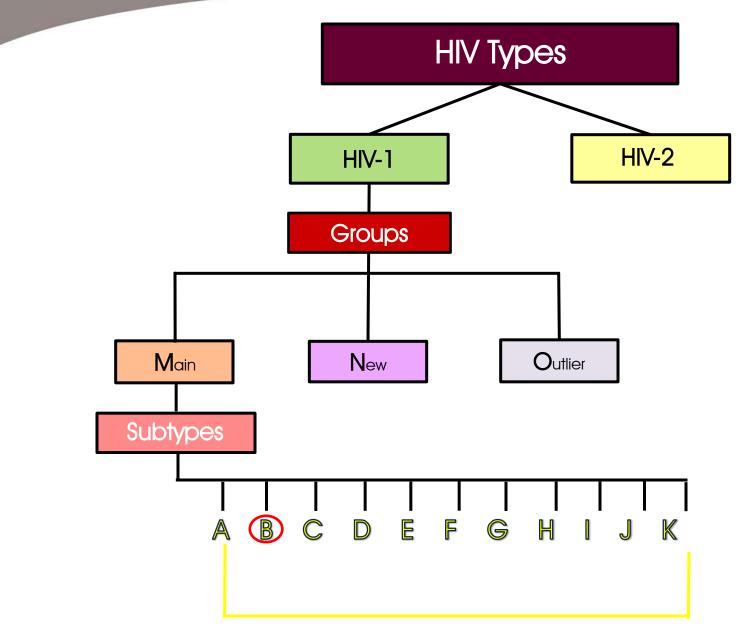
Description: The American College of Physicians (ACP) developed this guidance statement to present the available evidence on screening for HIV in health care settings.

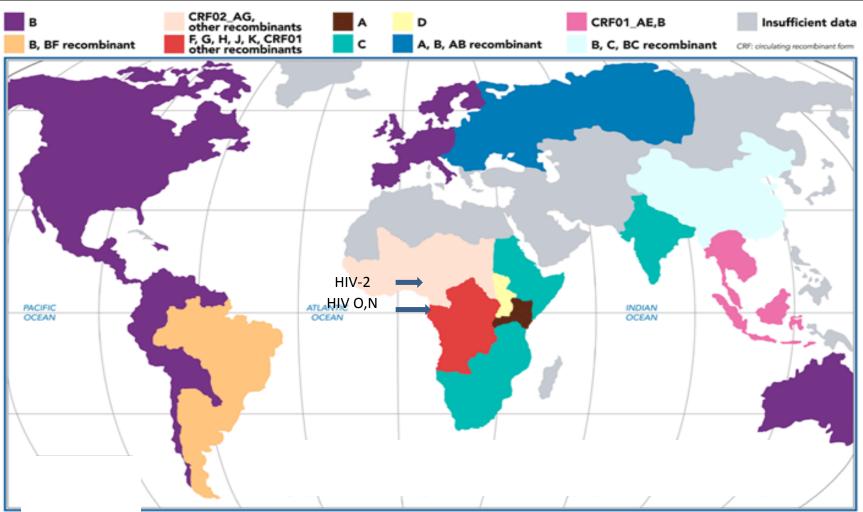

Methods: This guidance statement is derived from an appraisal of available guidelines on screening for HIV. Authors searched the

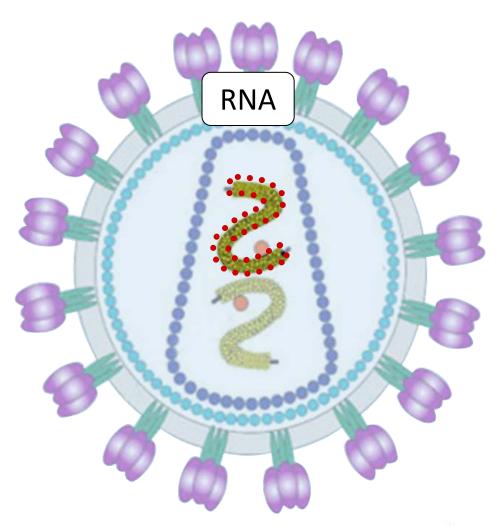
Guidance Statement 1: ACP recommends that clinicians adopt routine screening for HIV and encourage patients to be tested.

GuidanceStatement2: ACP recommends that clinicians determine the need for repeat screening on an individual basis.

- Screen all patients 13 years and older for HIV
- Retest high risk patients (per physician perception of need)
- Importance of screening pregnant women

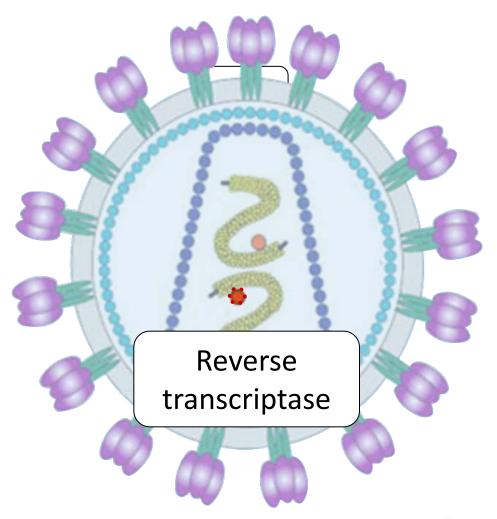

Human Immunodeficiency Virus (HIV)

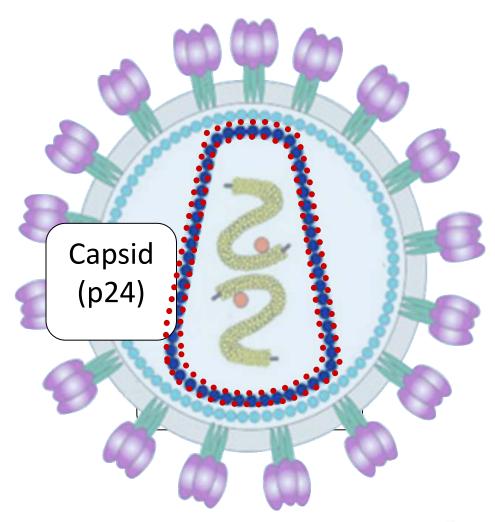

Institute for Learning Adapted from Siemens slide

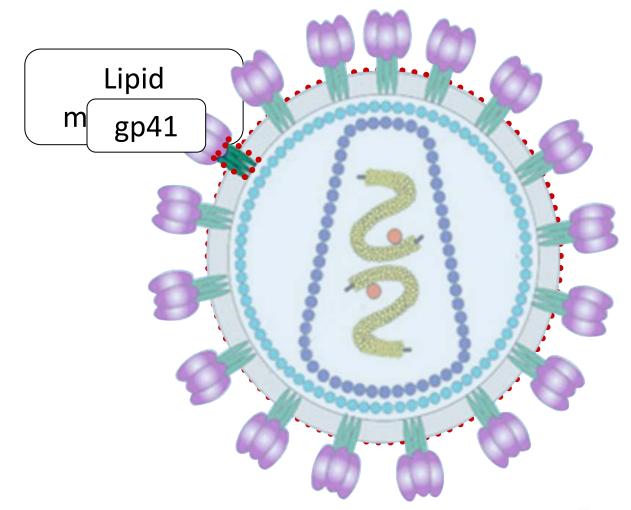

Circulating Recombinant Forms (CRF)

HIV Distribution

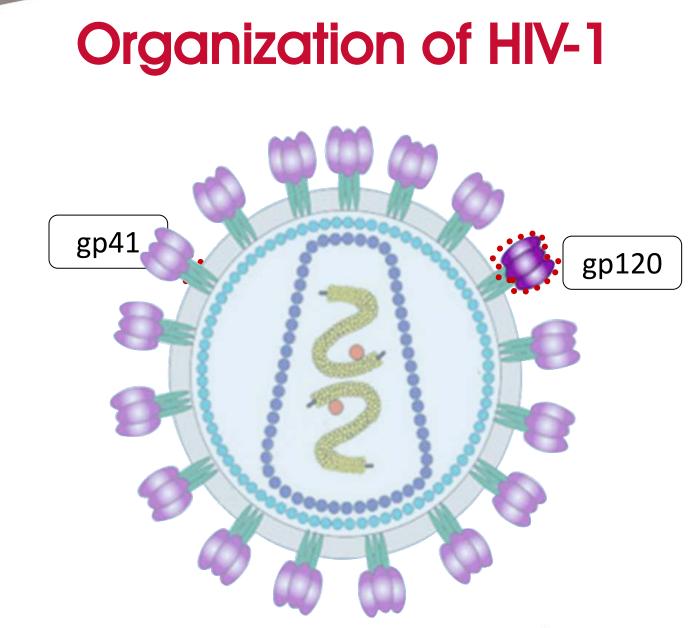
McCusthan, Henry M. Jackson Foundation (Rockville, Maryland). McCusthan and colleagues are indebted to the many international collaborators who helped develop the data used to generate this map.


Francine E. McCutcham, Henry M. Jackson Foundation (Rockville, Maryland). IAVI Report, August 2003



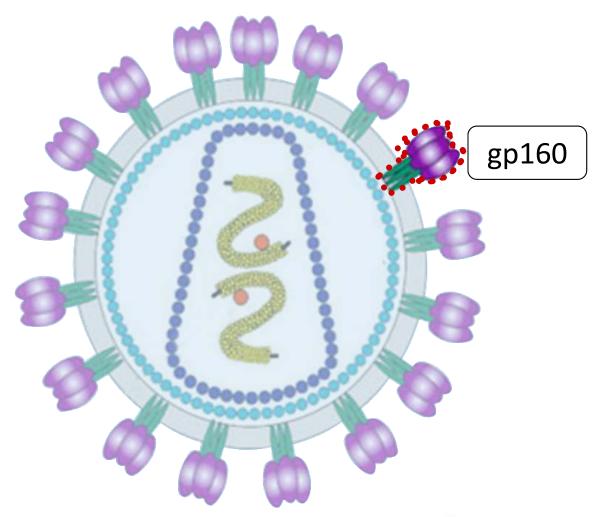


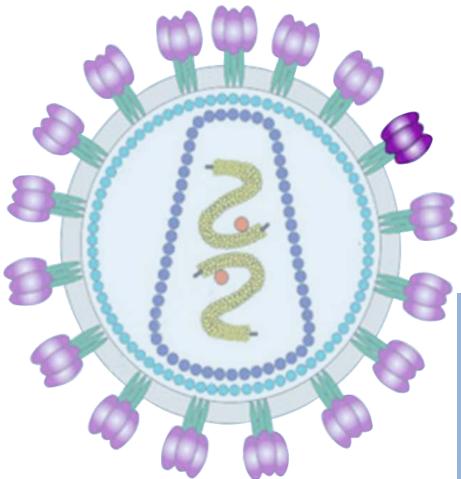
Institute _{for} Learning

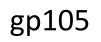


Institute for

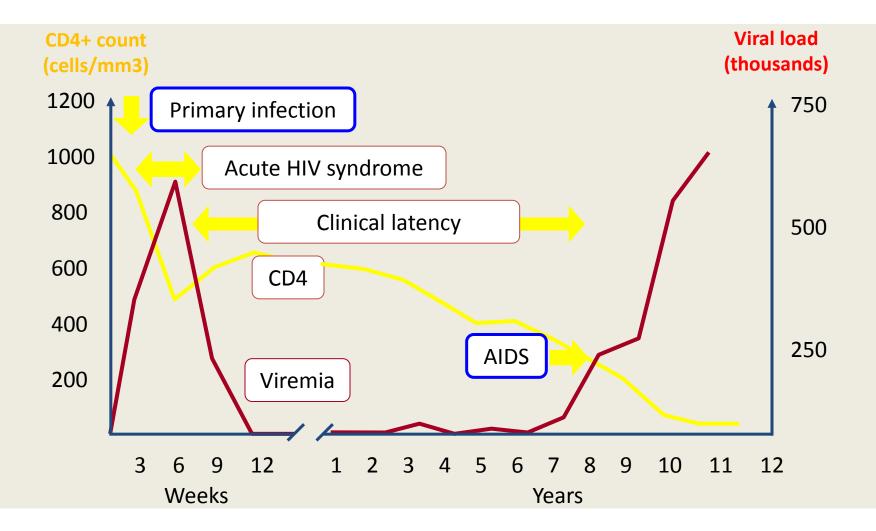
Learning





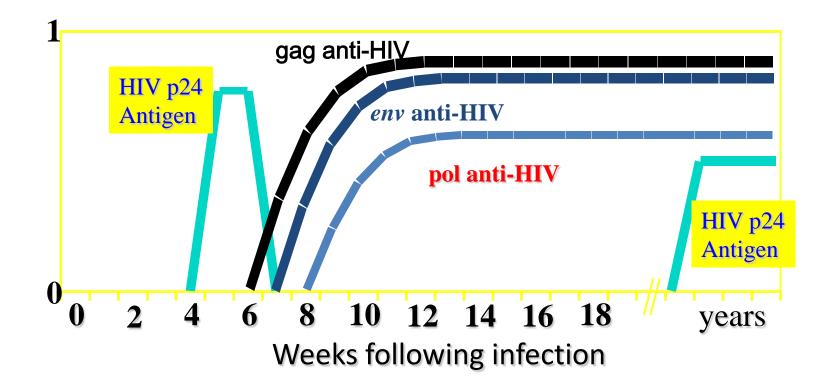


Institute _{for} Learning



gp36

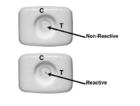
HIV-2 causes AIDS


but disease progression is slower, virus is less fit, and does not respond to certain drugs used to treat HIV-1 infection

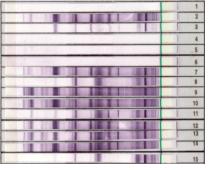
HIV Infection Course

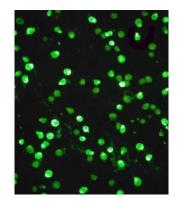
HIV Serological Response

Typical response following infection



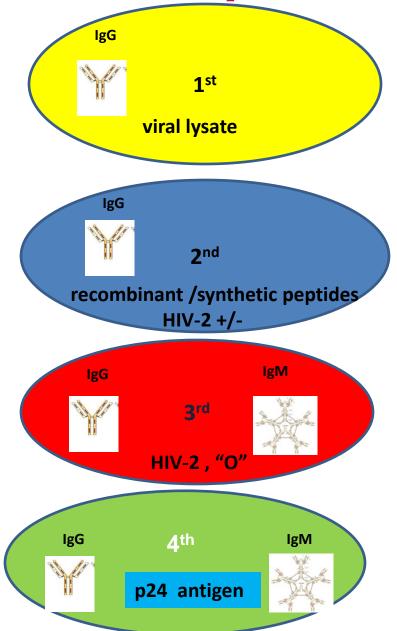
HIV Diagnostic Algorithm


 Screen traditional EIA/CIA rapid tests



Confirmation
 Western blot (98%)
 IFA

Prognosis and monitoring
 viral load public acid amplification


viral load – nucleic acid amplification test (NAAT)

Note: APTIMA, Genprobe (TMA format) approved in 2006 for diagnosis and confirmation

Immunoassay Generations

Immunology.Roit.1985 (IgG &I gM)

US FDA-Cleared Rapid Antibody Tests

FDA-Approved Rapid HIV Antibody Tests

Test	Manufacturer	Sample Type	Sensitivity	Specificity
OraQuick ADVANCE	OraSure Technologies	oral fluid	99.3%	99.8%
Rapid HIV-1/2 Antibody Test	(Bethlehem, Pa.)	whole blood	99.6%	100%
TEST		(fingerstick or venipuncture)		
		plasma	99.6%	99.9%
Clearview COMPLETE HIV ½	Inverness Medical Pro- fessional Diagnostics (Louisville, Colo.)	whole blood (fingerstick or venipuncture)	99.7%	99.9%
		serum and plasma	99.7%	99.9%
Clearview HIV ½ STAT- PAK	Inverness Medical Pro- fessional Diagnostics	whole blood (fingerstick or veni- puncture)	99.7%	99.9%
		serum and plasma	99.7%	99.9%
Reveal G-3 Rapid HIV-1	MedMira, Inc.	serum	99.8%	99.1%
Antibody Test	(Halifax, Nova Scotia)	plasma	99.8%	98.6%
Uni-Gold Recombigen HIV	Trinity Biotech (Berkley Heights, N.J.)	whole blood (fingerstick or venipuncture)	100%	99.7%
		serum and plasma	100%	99.8%
Multispot HIV-1/HIV-2	Bio-Rad	serum	100%	99.9%
Rapid Test	(Redmond, Wash.)	plasma	100%	99.9%

Rapid Test Sensitivity

		Initial specimen							
Patient	Result by the following test:								
identifier	Vironostika EIA	WB	HIV-1/2/O EIA	OQ RT	UG RT	SP RT	MS RT	Viral load (no. of copies/ml)	
Α	NR	I	NR	NR	NR	NR	NR	5,770	
В	NR	I	NR	NR	NR	NR	NR	≥500,000	
С	NR	I	\bigcirc	NR	\bigcirc	NR	NR	12,183	
С									
D	NR	N	NR	NR	NR	NR	NR	77	
E	NR	I	NR	NR	NR	NR	NR	6,373	
F	NR	I	R	NR	R	NR	RD	≥500,000	
G	NR	N	NR	NR	NR	NR	NR	12,852	
н	NR	I	NR	NR	NR	NR	NR	14,062	
I	NR	I	R	\bigcirc	R	R	RD	≥500,000	
J	NR	N	NR	NR	NR	NR	NR	3,921	
ĸ	NR	N	R	NR		NR	NR	≥500,000	
L	NR	N	NR	NR		NR	NR	≥500,000	
М	NR	N	\bigcirc	NR	NR	NR	NR	≥500,000	
М									
N	NR	N	NR	NR	NR	NR	NR	1,177	
N								- 500 000	
0	NR	N	NR	NR	NR	NR	NR	≥500,000	
Р	NR	N	R	NR	R	NR		≥500,000	
Q	NR	N	NR	NR	NR	NR	NR	43,173	
R	NR	I	NR	NR	NR	NR	NR	30,734	
S	NR	N	R	NR		NR		≥500,000	
T	NR	N	R	NR	NR	NR	NR	≥500,000	
U	NR	N	NR	NR	NR	NR	NR	≥500,000	
V	NR	N		NR NR		NR		≥500,000 ≥500,000	
W	NR	I	R	NK	<u> </u>	NR	R	≥300,000	
W	ND	N	ND	NTD	NR	NR	NR	≥500,000	
X Y	NR	N N		NR NR	NR	NR	NR	≥500,000	
Z	NR NR	N	NR	NR	NR	NR	NR	102,288	
Z AA	NR	N	NR	NR	NR	NR	NR	327,333	
AA AB	NR	N	NR	NR	NR	NR	NR	≥500,000	
AD	NR	I	NR	NR	NR	NR	NR	≥500,000	
AD	NR	N	NR	NR	NR	NR	NR	≥500,000	
AE	NR	N	NR	NR	NR	NR	NR	389,850	
AE	IVIN	14	INK		INK	IVIX	i vix	565,050	
AF	NR	I	NR	NR	R	NR	RD	413,186	
AG	NR	Î	NR	NR	NR	NR	NR	446,770	
AU	NR	Ň	NR	NR	NR	NR	NR	358,030	
AJ	NR	N		NR	NR	NR	NR	≥500,000	
AK	NR	N	NR	NR	NR	NR	NR	427,490	
AL	NR	N		NR		NR	NR	210,204	
AL	141	74		141		1.11	1.11	#10,40T	
AM	NR	N	NR	NR	NR	NR	NR	≥500,000	
AN	NR	N	NR	NR	NR	NR	NR	≥500,000	
AO	NR	N		NR	NR	NR	NR	≥500,000	
AP	NR	N		NR	\bigcirc	NR		≥500,000	
AR	NR	N	NR	NR	NR	NR	NR	≥500,000	
	***	14	1111			1.11	111		

Multispot Statpak Unigold Recombigen OraQuick HIV-1/2/0 - 3rd gen(Genetics Systems) Western Blot

Louie B, et al. Assessment of Rapid Tests for Detection of Human Immunodeficiency Virus-Specific Antibodies in Recently Infected Individuals. Journal of Clinical Microbiology. 2008

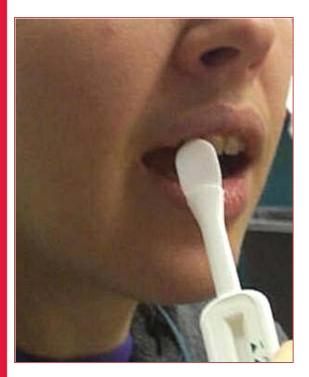
OraQuick® Advance

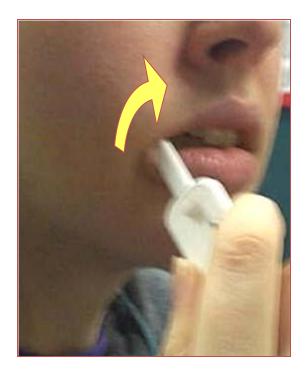
- Synthetic gp-41 (HIV-1)
- Synthetic gp-36 (HIV-2)
- Goat anti-human IgG

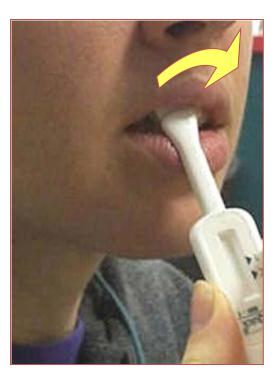
OraQuick[®] Advance - Fingerstick

Obtain a finger stick specimen

Insert loop into vial and stir



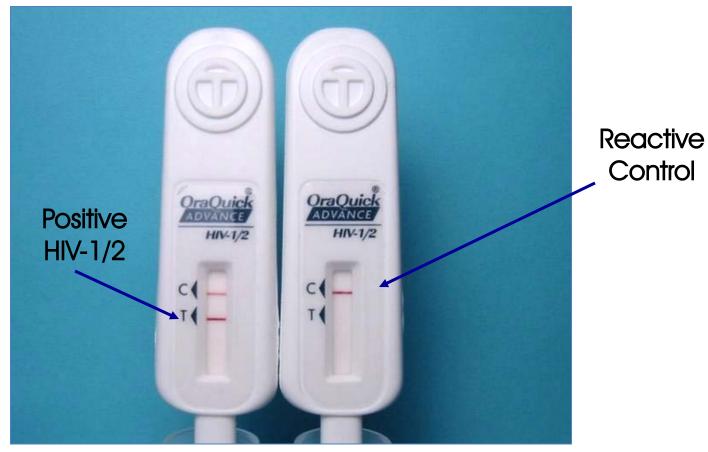



Institute _{for} Learning

OraQuick[®] Advance – Oral Fluid

Institute _{for} Learning

OraQuick® Advance


Photograph courtesy of the CDC: www.cdc.gov/hiv/rapid_testing

Interpreting Results

Photograph from CDC: www.cdc.gov/hiv/rapid_testing

Multispot HIV-1/HIV-2 Rapid Test

Reactive Control

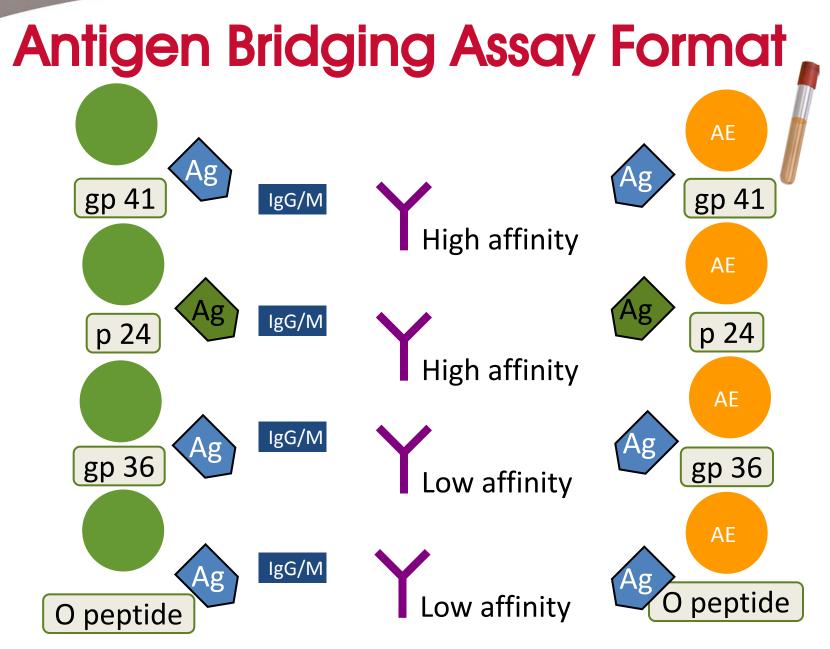
HIV-1

HIV-1 HIV-2 Reactive Negative (HIV-1 & HIV-2)

Detects and differentiates between HIV-1 and HIV-2

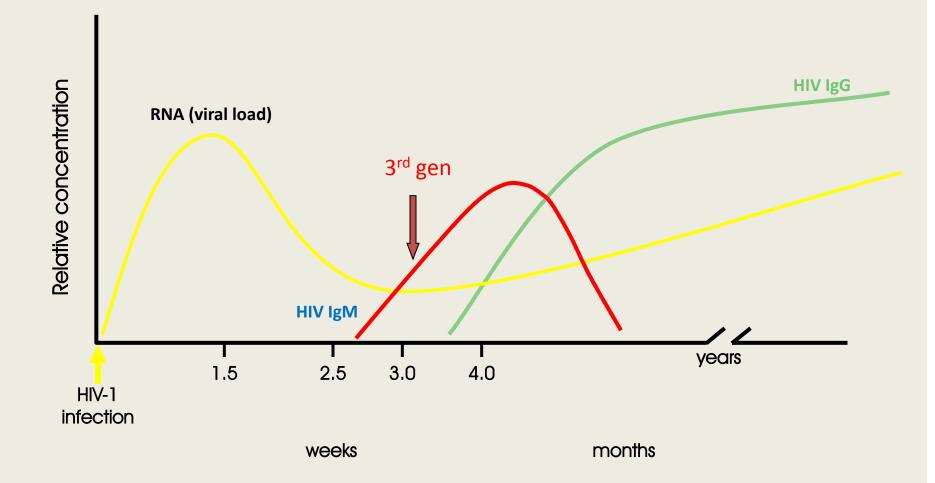
3rd Generation Anti-HIV Assays

• Platforms


ADVIA Centaur EHIV 1/2/0 (Siemens) Ortho VITROS anti-HIV 1 +2 Bio-Rad GS HIV-1/HIV-2 Plus O EIA

• Characteristics

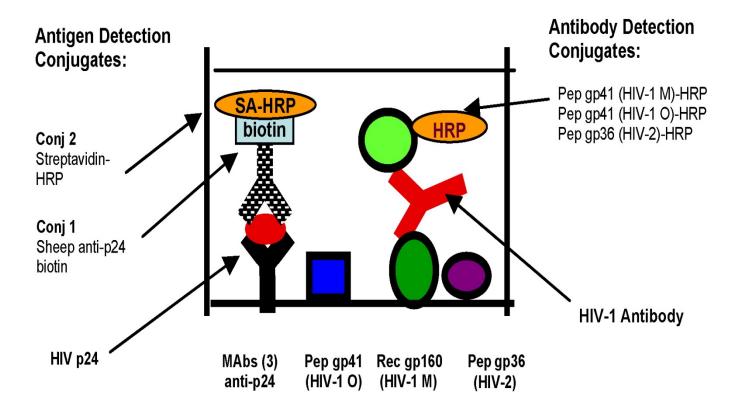
enzyme immunoassay (EIA) / (CIA) detect HIV infection at 22 days detect HIV 1/2 and O infection(depending on assay) detect HIV anti- HIV IgG and IgM antigen bridging assay format



Adapted from Siemens slide

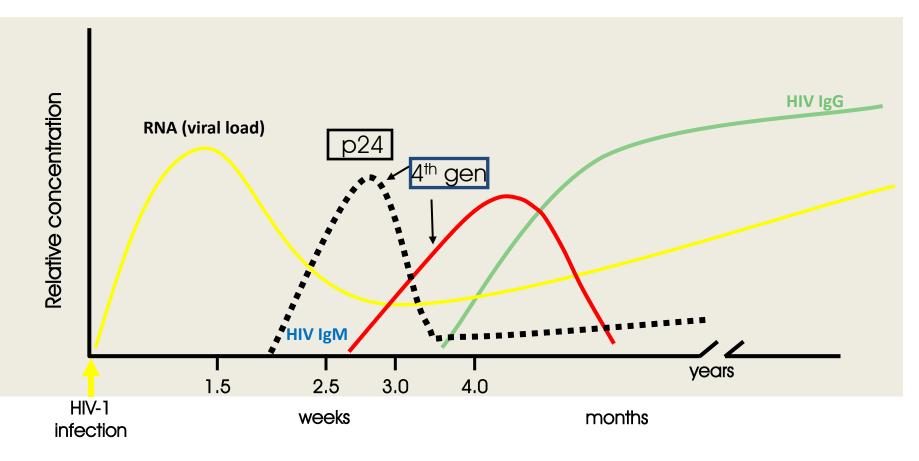
Serologic Detection of HIV Infection: 3rd gen

Antigen/Antibody Combo (4th Generation) HIV


- Detects both anti-HIV 1 and 2 antibodies and p24 antigen
- Does not distinguish between Ab+ or Ag+
- Detects both HIV-1 and HIV-2, but does not discriminate
- 1st FDA approved June 2010 (Abbott Diagnostics Architect Platform)
- 2nd FDA approved July 2011 (Bio-Rad, manual or semiautomated)
- Improved detection of Acute HIV
- Testing Algorithm ?

earning

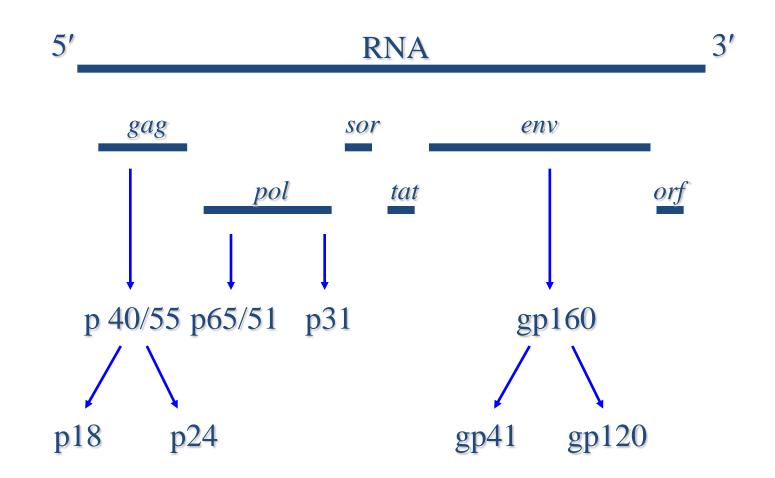
Antigen/Antibody Combination Assay Format


Bentsen et al. Journal of Clinical Virology. 2011

Institute for Learning

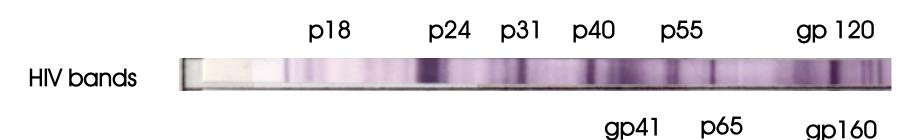
Serologic Detection of HIV Infection: 4th gen

Detects infection at 2.5 - 3.0 weeks, 5 days earlier than 3rd gen


Confirmation for HIV-1 Infection

- All repeatedly reactive EIA/CIA screening assay results must be confirmed
- POC results are considered "preliminary positive" results and must also be confirmed
- Confirmation for HIV-1 Infection Indirect Immunofluorescence (IFA) Western Blot

Western Blot HIV Antigens



Institute _{for} Learning

Western Blot Pattern Interpretations

- Nine characteristic HIV antibody bands
- Cardinal: p24, gp41, and gp120/160 (combined)
- Noncardinals: p18, p31, p51, p55, p65
- Positive = at least 2 of the 3 cardinals
- Negative = no bands present (FDA criteria)
- Indeterminate = anything that does not meet + or interpretation

False Positive Immunoassay Results

• Vaccinations

flu, rabies

- HIV vaccine trials
- Autoimmune disease
- Liver disease
- Undefined cross reactivity

Western Blot "Indeterminate"

- Indeterminate results may be due to
 - infected but in the "window"
 - advanced disease, AIDS
 - HIV vaccinated
 - infected with HIV-2
 - uninfected, cross reactivity
 - viral or non-viral bands, recent flu and rabies vaccinations, multiple pregnancies, recipients of multiple transfusions, autoimmune disease
 - study followed 99 blood donors 91 stable indeterminate Western blot patterns over 30 months
- Indeterminate results require follow-up repeat Western blot NAAT

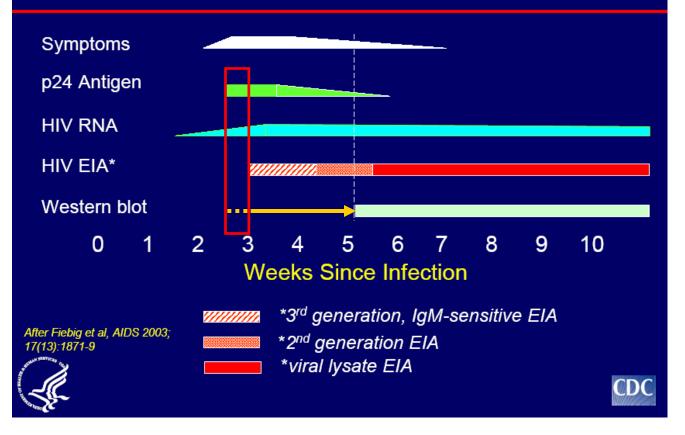
HIV-2 Testing

Persons at risk for HIV-2 infection include

- Sex partners of a person from a country where HIV-2 is endemic
- Sex partners of a person known to be infected with HIV-2
- People who received a blood transfusion or a nonsterile injection in a country where HIV-2 is endemic
- People who shared needles with a person from a country where HIV-2 is endemic or with a person known to be infected with HIV-2
- Children of women who have risk factors for HIV-2 infection or are known to be infected with HIV-2

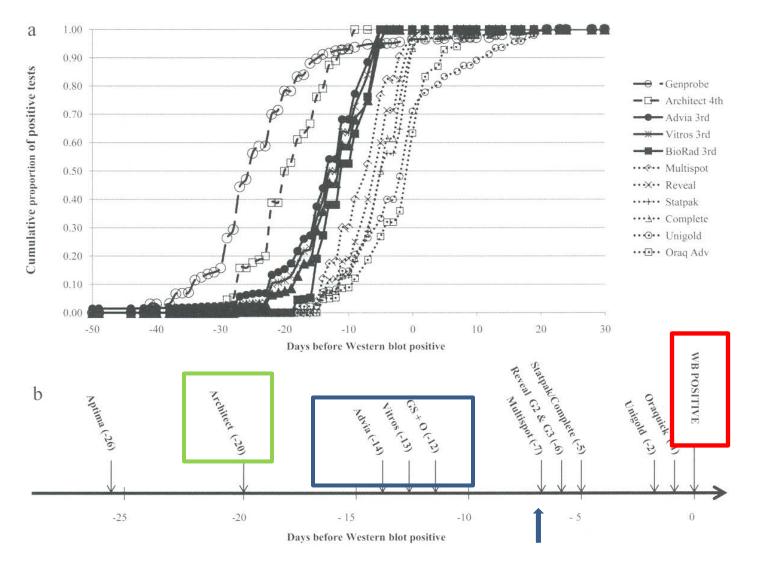
HIV-2 testing also is indicated for

- People with an illness that suggests HIV infection (such as an HIV-associated opportunistic infection) but whose HIV-1 test result is not positive
- People for whom HIV-1 Western blot exhibits the unusual indeterminate test band pattern of gag (p55, p24, or p17) plus pol (p66, p51, or p32) in the absence of env (gp160, gp120, or gp41)



Sensitivity of HIV Assays

Detection of HIV by Diagnostic Tests



Detecting HIV Infection and Current Assays

Masciotra et al. Journal of Clinical Virology 2011.

HIV Algorithms

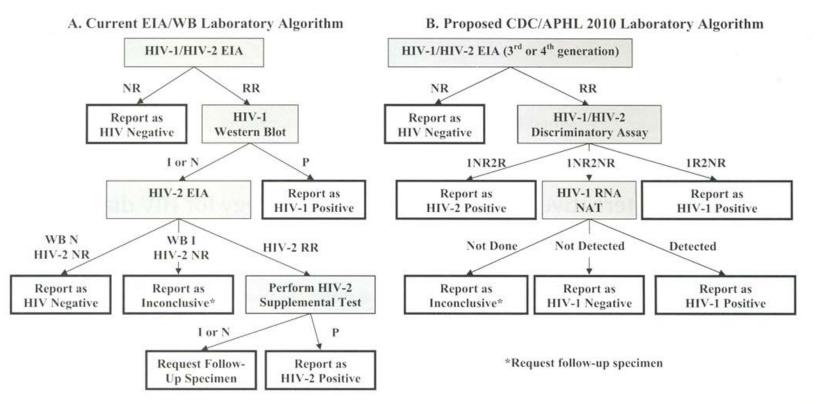
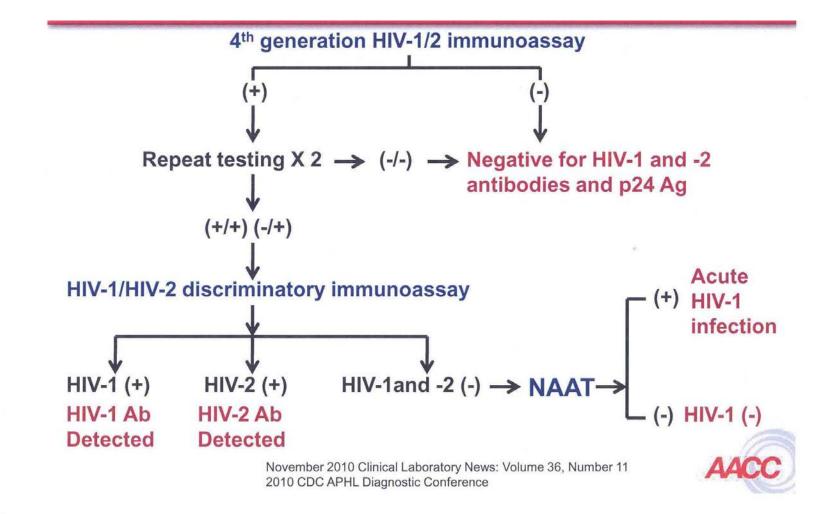


Fig. 1. Components and interpretations of (A) the current EIA/WB algorithm and (B) the proposed CDC/APHL 2010 algorithm. Shaded boxes, tests performed; unshaded boxes, interpretation of test results; EIA, enzyme immunoassay; WB, Western blot; NAT, nucleic acid test; NR, non-reactive; RR, repeatedly reactive; I, indeterminate; N, negative; P, positive.

Current Algorithm Issues

- Detecting Acute HIV infection increased sensitivity with 4th gen, Ag/Ab Combo
- Western Blots


insensitive compared to current screening assays indeterminate/inconclusive

• Diagnosing HIV-2 infection

CDC Proposed Algorithm

Acute HIV Detection

Table 2

Analysis of the current two-test algorithm in acute HIV-1 infections (seroconversion panels).

Screening test	GS+O	Vitros	Advia	Architect
Number of first positive results	108	110	111	135
WB positive (n)	56	56	56	56
WB indeterminate (n)	38	39	39	43
+NAAT positive (n)	36	37	37	41
+NAAT negative (n)	1	1	1	1
+NAAT not available (n)	1	1	1	1
WB negative (n)	14	15	16	36
Current algorithm positive (n)	56	56	56	56

Masciotra et al. Journal of Clinical Virology 2011.

HIV-1 vs HIV-2 and Western Blot

	p17	p24	p31	p40	gp41	p51	p55	p66	gp120	gp160
HIV-2 (n=114)				- 10 C	5752			20.0	10.5	48.3
Present	18.4	93.9	83.3	88.6	1.8	74.6	73.7	29.8	10.5	40.0
Present but weak	14.9	4.4	7.0	9.7	0.9	17.5	17.5	10.5	10.5	22.0
Absent	66.7	1.8	9.7	1.8	97.4	7.9	8.8	59.7	79.0	29.0
HIV-1 (<i>n</i> = 1761)	78.8	91.4	95.2	_	97.4	97.2	93.3	95.0	98.6	99.9
Present		7.3	2.0	1	1.7	1.4	1.3	2.8	0.6	0.1
Present but weak	6.3							2.2	0.8	0.0
Absent	14.9	1.4	2.8	-	0.9	1.4	5.4	2.2	0.8	0.0

Nasrullah et al. Journal of Clinical Virology 2011.

Table 1

Institute for Learning

HIV-2 Infection Misclassification by Western Blot

Current CDC HIV-1 WB criteria ^a	Alternative HIV-1 WB criteria ^b , n (%)						
	Negative	Indeterminate	Positive	Total			
Vegative	1(0.9)	0(0.0)	0(0.0)	1 (0.9)			
ndeterminate	0(0.0)	60(52.6)	0(0.0)	60(52.6)			
Positive	0(0.0)	40(35.1)	13(11.4)	53(46.5)			
Total	1(0.9)	100(87.7)	13(11.4)	114(100.0)			

Nasrullah et al. Journal of Clinical Virology 2011 .

GS Ag/Ab Combo and Long Standing HIV Infection

Population	Ν	GS HIV Combo Ag/Ab EIA repeatedly reactive	Licensed HIV-1/HIV-2 EIA repeatedly reactive
Known HIV-1 Ab positive U.S.	1000	1000 (100%)	1000 (100%)
Known HIV-1 Ab positive, Non-U.S.	200ª	200 (100%)	200 (100%)
AIDS	100	100 (100%)	100 (100%)
Known HIV-1 Ab positive, pediatric	40	40 (100%)	40 (100%)
Total	1340	1340 (100%)	1340 (100%)

a Columbia (9), Thailand (31), Australia (100), Nigeria (10), Central African Republic (10), Sierra Leone (10), Ghana (10), Senegal (10), and Zimbabwe (10).

Bentsen et al. Journal of Clinical Virology 2011.

Institute for Learning

Acute HIV and GS HIV Combo Ag/Ab

Table 1

Individuals with acute HIV infections and follow-up sample testing.

Acute HIV patient	Days from 1st bleed	HIV-1 RNA copies (mL)	GS HIV Combo Ag/Ab EIA	Historical results ^a		
			Result	HIV-1/HIV-2 EIA Result	HIV-1 EIA Result	HIV-1 Western Blot Result
1	0	>500,000	RR	NR	NR	NEG
	56	NA	RR	R	R	POS
2	0	183,850	RR	NR	NR	NEG
	16	10,479	RR	R	R	Pos
	42	NA	RR	R	R	Pos
3	0	>500,000	RR	R	NA	NEG
	141	NA	RR	R	R	POS
4	0	>500,000	RR	NR	NR	NEG
	19	NA	RR	R	R	POS
5	0	>500,000	RR	R	R	NEG
	21	NA	RR	R	R	IND
	64	NA	RR	R	R	POS
6	0	795,520	RR	NR	NR	NEG
	25	NA	RR	R	R	POS
	32	NA	RR	R	R	POS
7	0	72,000	RR	NR	NR	NEG
	34	NA	RR	R	R	POS
8	0	460,790	RR	R	NR	NEG
	15	NA	RR	R	R	Pos
	29	NA	RR	R	R	Pos
9	0	20,420	NR	NR	NR	NEG
Number EIA reactiv (% EIA reactive or	e or WB positive/numb WB positive)	er tested	20/21 (95.24%)	15/21 (71.43%)	13/20 (65.00%)	11/21 (52.38%)

Bentsen et al. Journal of Clinical Virology 2011

GS HIV Combo Ag/Ab Specificity

Low risk population	Number tested	GS HIV Combo Ag/Ab EIA	Repeatedly reactive specin	Specificity	
		Repeatedly reactive (% reactive)	HIV-1 Western blot positive (% positive)	HIV-2 positive (% positive)	(# negative/total)ª
Health insurance applicants	2000	6(0.30%)	2 (0.10%)	0 (0.00%)	99.80% (1994/1998)
Normal blood donors	2000	0(0.00%)	NT	NT	100% (2000/2000)
Pregnant women	1000	2(0.20%)	1 (0.10%)	0 (0.00%)	99.90% (998/999)
Military recruits	1000	3 (0.30%)	1 (0.10%)	0 (0.00%)	99.80% (997/999)
Healthy pediatric subjects	100	0(0.00%)	NT	NT	100% (100/100)
Total	6100	11(0.18%)	4 (0.07%)	0 (0.00%)	99.89% (6089/6096)

NT: not tested and #: number.

^a Four HIV-1 Western blot positive samples were removed from the specificity calculation.

Bentsen et al. Journal of Clinical Virology 2011.

Institute for Learning

Architect Ag/Ab Combo

Table 2

Sensitivity and specificity of the ARCHITECT Ag/Ab Combo assay.^a

Result	No. of sa	mples			Sensitivity (95% CI)	Specificity (95% CI)	
	HIV-1-infected (<i>n</i> = 3386)) HIV-1-uninfect	ted (<i>n</i> = 7551)			
Initial screening							
Positive	3384		92				
Negative	2		7459				
Performance					99.94% (99.79, 99.99)	98.78% (98.51, 99.02)	
Retest screening ^b					,		
Positive	3384		38				
Negative	2		7513				
Performance					99.94% (99.79, 99.99)	99.50% (99.31,99.64)	
Result		Acute infec	tions (<i>n</i> = 58)	Sensitivity	(95% CI)		
Positive		48					
Negative		10					
Performance		10		82.76% (70	0.57, 91.41)		

Chavez et al. Journal of Clinical Virology 2011

Multispot

L.V. TOHUN et al. / JOURNAL OF C

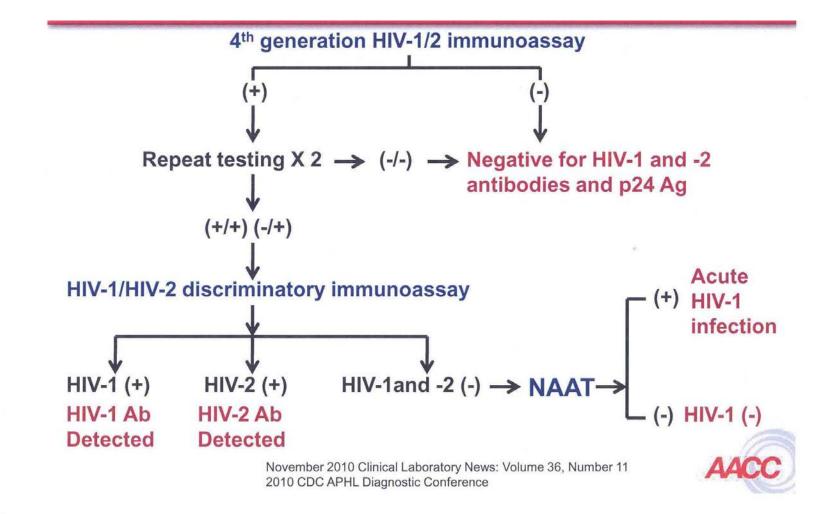
	Multispot Multispot Positive Negative		Total		
	N	Row %	N	Row %	N
Western Blot Positive	8670	99.9%	8	0.1%	8678
Western Blot Negative	3	15.8%	16	84.2%	19
Western Blot Indeterminate	23	36.5%	40	63.5%	63
Total	8696	99.3%	64	0.7%	8760

Fig. 2. Western blot vs. Multispot sensitivity.

Torian et al. Journal of Clinical Virology 2011.

Comparison of Algorithms

	Sensitivity		Specificity	
	%	95% CI	%	95% CI
Single test				
Architect	99.76	98.65-99.96	100.00	99.08-100.00
GS+O	100.00	99.09-100.00	99.52	98.26-99.87
Multispot	99.52	98.26-99.62	99.03	97.54-99.61
Oraquick	98.80	97.22-99.49	99.76	98.64-99.96
Reveal G2	99.28	97.90-99.75	99.76	98.64-99.96
Unigold	98.80	97.22-99.49	99.52	98.26-99.87
Two-test current algorithm				
Architect/WB	99.76	98.65-99.96	100.00	99.08-100.00
GS+O/WB	100.00	99.09-100.00	100.00	99.08-100.00
Three-test proposed algorithm				
Architect or GS+O/Multispot/NAAT ^a	. 99.76	98.65-99.96	100.00	99.08-100.00
Architect or GS+O/Oraquick/NAAT	99.28	97.96-99.75	100.00	99.08-100.00
Architect or GS+O/Reveal G2/NAAT	99.28	97.96-99.75	100.00	99.08-100.00
Architect or GS+O/Unigold/NAAT	99.52	98.26-99.87	100.00	99.08-100.00


Masciotra et al. Journal of Clinical Virology 2011.

Institute for Learning

CDC Proposed Algorithm

New Algorithm Benefits

- Increased detection of acute HIV infection Ag/Ab Combo Assay NAAT confirmation of acute HIV infection
- Eliminate inconclusive/indeterminate results eliminating the Western Blot
- Decrease turn around time & linkage to care replacing Western blot with Multispot
- Increased detection of HIV-2 infection replacing Western blot with Multispot

New Algorithm Challenges

- Only two platforms currently available for Ag/Ab Combo assays
- Multispot is a rapid test, originally approved as a screening assay
- There is only one qualitative molecular assay approved for HIV diagnosis (Aptima) that is not widely available and not automated
- Quantitative or viral load HIV assays are widely utilized but none is approved for diagnosis
- If a laboratory is using an antigen/antibody combo assay for screening then confirmation by Western blot is insufficient because it only detects anti-HIV antibody

Thank you!

Institute _{for} Learning

