Rapid Antimicrobial Susceptibility Testing

Mark Fisher, PhD, D(ABMM)

Associate Professor of Pathology University of Utah School of Medicine Medical Director, Bacteriology and Special Microbiology Labs ARUP Laboratories

IFL Quarterly Webinar December 10, 2019

Disclosures

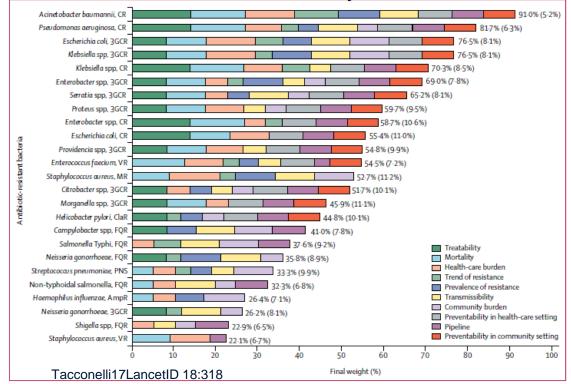
None

Objectives

- Discuss current rapid AST methods
- Evaluate clinical impact of rapid AST
- Assess future rapid AST technologies

Abbreviations

- Abx antibiotics
- AST antimicrobial susceptibility testing
- BMD broth microdilution
- CA categorical (interpretation) agreement
- DD disk diffusion (Kirby-Bauer)
- EA essential agreement (MIC ±1 dilution)
- ID identification (of organisms)
- LOS length of stay
- MIC minimal inhibitory concentration
- TTR time to results

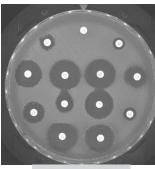


https://wiki.southpark.cc.com/wiki/Mr._Mackey

Antibiotic resistance

- Increasing concern over antibiotic resistant organisms
- Morbidity and mortality despite a wide array of antibiotics
- Rapid Antimicrobial Susceptibility Testing (AST) should help improve antibiotic use and patient outcomes.

WHO Abx-R Priority List


How rapid is "rapid"?

 Standard reference Antimicrobial Susceptibility Testing (AST) methods require ~18-24h incubation to interpret

Not "rapid"

- Are AST results in 12h "rapid"?
 - BD Phoenix AST average time to result (TTR) is ~12h
- 8h?
 - bioMerieux Vitek2 AST average TTR is ~8.5h
- 6h?
 - BD Phoenix AST TTR range is ~6-16h (Microscan G+ similar)
- 4h?
 - bioMerieux Vitek2 AST TTR range is ~4-10h (Microscan G- similar)
- This is as fast as current commercial phenotypic AST gets...
- Current molecular methods can be faster, but don't give full AST
- Longitude Prize (£8 million): <30min, POC Dx, usable anywhere, affordable, right antibiotic at the right time

	•			
18 November 2014	14 November 2018	30 January 2020	2015 - 2020	
The Longitude Prize opened for submissions	Longitude Prize extension announced	Next Longitude assessment deadline	First team to successfully meet the criteria wins the	Eigner05JCM 43:3829, longitudeprize.org
		(every four months)	Prize	

Commercial rapid molecular "AST"

- Methicillin resistance in *S. aureus, mecA*
- Vancomycin resistance in *Enterococcus, vanA/B*
- Rifampin resistance in *M. tuberculosis, rpoB*
- Multiplex tests for blood cultures
 - Rapid ID plus limited resistance gene detection: *mecA, vanA/B,* select βlactamases (common carbapenemases, ± limited ESBL)
- Multiplex test for respiratory specimens
 - Rapid ID plus somewhat broader resistance gene detection: mecA, vanA/B, common carbapenemases, limited ESBL, ermB (macrolide/lincosamide), sul1 (sulfonamide), gyrA (quinolone)
- Non-FDA-cleared DNA microarrays, multiplex PCRs
 - multiple β-lactamases (AmpC, ESBL, carbapenemases)
- WGS looks promising, but no commercial AST kits yet

Molecular "AST" Pros/Cons

- Pros
 - Speed
 - Sensitivity
 - Direct from sample
 - Don't require pure culture
- Cons
 - Exquisitely targeted (false neg/false susceptible)
 - Detection not directly tied to function (false pos/false resistant)
 - No minimal inhibitory concentration (MIC)
 - Cost
 - Supplemental nature of results (still want "full AST")

Do clinicians respond to rapid molecular tests?

Clinical Infectious Diseases 2005;41:1438-44 Impact of Rapid Detection of Viral and Atypical Bacterial Pathogens by Real-Time Polymerase Chain Reaction for Patients with Lower Respiratory Tract Infection

Jan Jelrik Oosterheert,¹ Anton M. van Loon,^{2,3} Rob Schuurman,^{2,3} Andy I. M. Hoepelman,^{1,3} Eelko Hak,⁴ Steven Thijsen,⁶ George Nossent,⁵ Margriet M. E. Schneider,¹ Willem M. N. Hustinx,⁷ and Marc J. M. Bonten^{1,3,4}

Division of Medicine, ¹Department of Internal Medicine and Infectious Diseases and ²Department of Virology, ^aEijkman Winkler Institute for Infectious Diseases, Microbiology, and Inflammation, ⁴Julius Center for Health Sciences and Primary Care, and ⁵Department of Respiratory Medicine, University Medical Center, and Departments of ⁶Medical Microbiology and ⁷Internal Medicine, Diakonessenhuis Utrecht, Utrecht, The Netherlands

- No significant difference in mortality, LOS, time on Abx, extra Dx procedures, and increased costs significantly.
- Clinicians hesitant to stop antibiotics based on +viral PCR

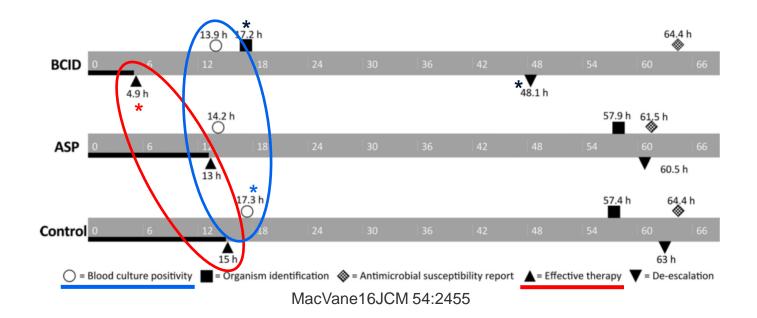
Eur J Clin Microbiol Infect Dis (2015) 34:831–838 DOI 10.1007/s10096-014-2299-0

ARTICLE

Impact of same-day antibiotic susceptibility testing on time to appropriate antibiotic treatment of patients with bacteraemia: a randomised controlled trial

J. Beuving • P. F. G. Wolffs • W. L. J. Hansen • E. E. Stobberingh • C. A. Bruggeman • A. Kessels • A. Verbon

- Faster ID and appropriate therapy, but no significant difference in mortality or LOS
- Clinicians hesitant to stop abx based on rapid molecular breakpoint AST (15h faster)



Benefits of Adding a Rapid PCR-Based Blood Culture Identification Panel to an Established Antimicrobial Stewardship Program

[©]Shawn H. MacVane,^{a,b} Frederick S. Nolte^c

Department of Pharmacy,^a Division of Infectious Diseases,^b and Department of Pathology and Laboratory Medicine,^c Medical University of South Carolina, Charleston, South Carolina, USA

- Individual contributions of Abx stewardship and rapid ID/"AST"
 - ~100 pts in each intervention. Significantly (40h) faster ID, time to effective therapy.
 - No significant difference pre/post stewardship or BCID for mortality, 30-day readmission, ICU LOS, post-culture LOS, or costs.
 - Noted a "potential hesitancy of providers to narrow the spectrum of antimicrobial activity based on the PCR result alone, prior to [AST] results."

Not a new phenomenon

DIAGN MICROBIOL INFECT DIS 1993;16:237-243

The Impact of Same-Day Tests versus Traditional Overnight Testing

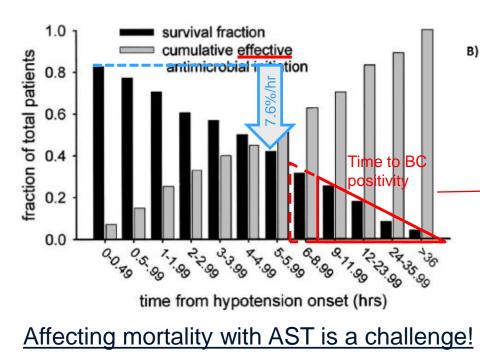
Paul A. Granato

"Clinicians appear to have been reluctant to modify initial empiric therapies, however, despite the availability of the rapid antimicrobial susceptibility report."

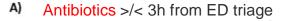
"There is still an understandable physician reluctance to modify existing therapy to a less expensive, equally efficacious agent in light of a favorable patient response."

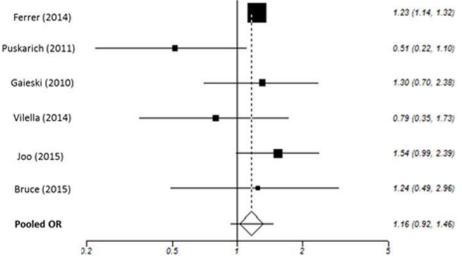
- "rapid" in 1993 was not that different than now
 - 9-10h then, 7-8h today

Eur J Clin Microbiol Infect Dis (2005) 24: 305–313 DOI 10.1007/s10096-005-1309-7

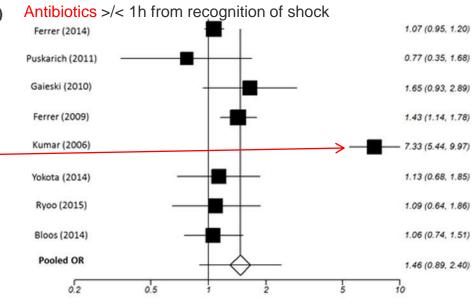

ARTICLE

M. Bruins · H. Oord · P. Bloembergen · M. Wolfhagen · A. Casparie · J. Degener · G. Ruijs


Lack of effect of shorter turnaround time of microbiological procedures on clinical outcomes: a randomised controlled trial among hospitalised patients in the Netherlands "To affect outcomes significantly, however, efficient clinical followup must be ensured, which probably warrants workflow changes in other hospital departments..."


Rapid vs. mortality

- Rapid antibiotics should reduce mortality
 ∴ rapid AST results should also reduce mortality
- Shouldn't they?



Kumar06CritCareMed 34:1589

Odds Ratio (95% Confidence Interval)

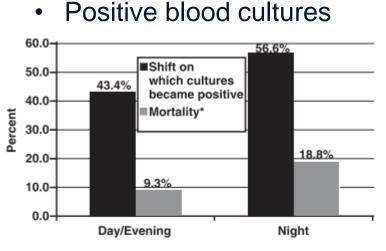
Odds Ratio (95% Confidence Interval) Sterling15CritCareMed 43:1907

So why do we expect better outcomes from rapid AST?

JOURNAL OF CLINICAL MICROBIOLOGY, July 1994, p. 1757–1762 0095-1137/94/\$04.00+0 Copyright © 1994, American Society for Microbiology Vol. 32, No. 7

Clinical Impact of Rapid In Vitro Susceptibility Testing and Bacterial Identification

GARY V. DOERN,^{1,2*} RAYMOND VAUTOUR,¹ MICHAEL GAUDET,² AND BRUCE LEVY¹


Department of Hospital Laboratories¹ and Division of Infectious Diseases,² University of Massachusetts Medical Center, Worcester, Massachusetts 01655

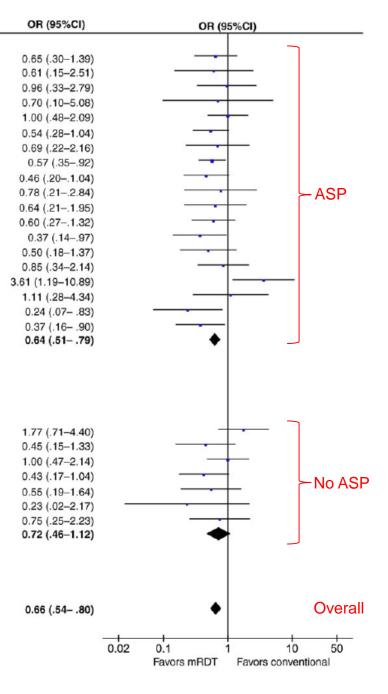
- Prospective, random(ish), all culture types, 300pts/group
- Automated phenotypic AST ~16h faster, ID ~8h faster than conventional testing
 - ID in 11h, AST in 9.6h
 - No MICs, just S/I/R
- Significant improvement in mortality, ICU LOS, ventilator days, # procedures, and costs, but not overall LOS.

Even rapid gram stain has a mortality impact

Figure 21 Culture positivity and mortality. * *P* = .0624.

	<1h	≥1h	Differ	Р			
				-			
	TAT	TAT	ence	value			
Time to detection (h)	13.7	13.6	0.1	0.7860			
Gram stain TAT (h)	0.1	3.3	-3.2	<.0001			
Mortality rate (%)	10.1	19.2	-9.1	0.0389			
Length of stay (d)	11.0	10.5	0.5	0.6936			
Positive length of stay (d)*	7.9	7.7	0.2	0.7920			
Variable costs (\$)	9,543	9,361	182	0.9150			
Male sex (% of group)	47	49	-2	0.7773			
Age (y)	69.2	66.6	2.6	0.3054			
* The number of days between the date the culture became positive and the date of discharge.							

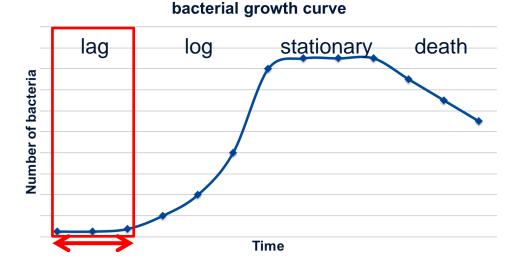
• No difference in time to appropriate abx



AR

Barenfanger08AJCP 130:870

Rapid molecular Dx?

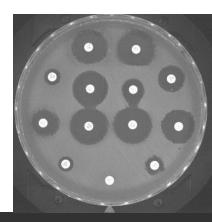

- Meta-analysis of mortality benefit in BSI, 31 studies, ~6k patients
 - Only 2 RCT, 2 case-control
- PCR, multiplex-PCR, MALDI-TOF, PNA-FISH from positive BC
- Numerical reduction of mortality with rapid identification (± "AST")
- Not statistically significant without accompanying antibiotic stewardship
 - "To affect outcomes significantly, however, efficient clinical follow-up must be ensured..." Bruins05EJCMID
- Overall, rapid results do have clinical impact
 - Time to results, and to a lesser extent, time to appropriate antibiotics are *typically* significantly better with rapid testing
 - Length of stay, costs are often significantly reduced
 - Mortality is frequently not significantly reduced
- Can't expect a rapid molecular result alone to reduce mortality

Timbrook17CID 64:15

Will rapid phenotypic AST be different?

- How fast can it be?
 - Limited by growth rate
 - Curve is dependent on
 - Organism
 - Growth medium
 - Environment

- Should be <4h (current commercial minimum)
- Will clinicians be more comfortable with these results than current partial/supplemental molecular tests?
 - Ideally 'full panel' results generated that do not need confirmation with traditional AST


LABORATORIES

Rapid Disk Diffusion

- Multiple studies since the 1970s
 - Reasonably high agreement at 4-8h vs. o/n reads, even directly from blood cultures
 - − So why aren't we doing this every day? \rightarrow Not "Standardized"?
- CLSI
 - Chandrasekaran et al: preliminary study
 - 20 GNR isolates, multiple labs, direct BC inoculum, read with current breakpoints at 6 and 18h
 - No dilution, washing, centrifugation, etc just BC broth smeared on plate!
 - 20 drugs evaluated
 - CA was modest at 6h (~70%) vs. BMD, 20% were not readable at 6h
 - Studies ongoing to establish recommendations
- EUCAST Rapid AST (RAST)
 - Current guidelines for short incubation (4, 6, 8h) AST directly from BC bottles
 - Validated for the following species:
 - Escherichia coli
 - Klebsiella pneumoniae
 - Pseudomonas aeruginosa
 - Acinetobacter baumannii
 - Staphylococcus aureus
 - Enterococcus faecalis and Enterococcus faecium
 - Streptococcus pneumoniae
 - Limited # of drugs

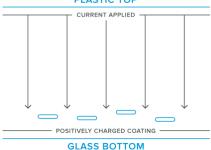
EUCAST RAST

- Disk diffusion with early reads direct from positive BCs
 - Inoculate plates w/ pos BC fluid
 - Incubate on MH/MH-F agar
 - % readable at early timepoints —
 - If zones not obvious, reincubate
 - Maximum incubation = 8h

- Organism- and time-specific breakpoints
 - 4-8 drugs validated for each organism, more to come for GNRs
 - Need to know ID before reporting \rightarrow Rapid molecular/MALDI-TOF
- Area of Technical Uncertainty: less separation of S & R with short incubation. Report as "Susceptible, increased exposure"
- During implementation, QC should be performed for the entire process: spike BC bottles containing sheep/horse blood, set up per protocol when flagged positive, evaluate using RASTspecific QC ranges

Organism	4h (%)	6h (%)	8h (%)
Escherichia coli	90	99	99
Klebsiella pneumoniae	96	98	98
Pseudomonas aeruginosa	-	88	97
Acinetobacter baumannii	99	100	100
Staphylococcus aureus	55*	91	95
Enterococcus faecalis	93	99	100
Enterococcus faecium	44	93	99
Streptococcus pneumoniae	68	83	95

* Fox/gent easy, clinda/norflox harder


Accelerate Pheno BC

- FDA cleared system for automated ID/AST from positive blood cultures
- Gel electrofiltration cleanup and electrostatic immobilization of bacteria
- Automated quantitation and dilution
- Automated microscopy of cells grown with and without antibiotics
- ID in ~90 min (automated FISH, 6 G+, 8 G-, 2 yeast)
- AST in ~7h (8 G+, 12 G- drugs)

MIC extrapolated from growth characteristics

 1 sample per instrument (\$250/sample, \$120k instrument list price)

/AN: h							8		
	۰.		÷					*	
	•						3 8	5	
VAN:	2		*						٠
1		• .		J.	۰.			۵.	
	Citro	bacter	sp	р.		Strep	otoc	occus	spp

01	nonderer spp.
С.	freundii
С.	koseri
CI	NS spp.
S.	capitis
S.	epidermidis
S.	haemolyticus
S.	hominis
S.	lugdunensis
S.	warneri

) µg/mL V

Klebsiella spp.

K. pneumoniae

Enterobacter spp.

K. oxytoca

F. cloacae

E. aerogenes

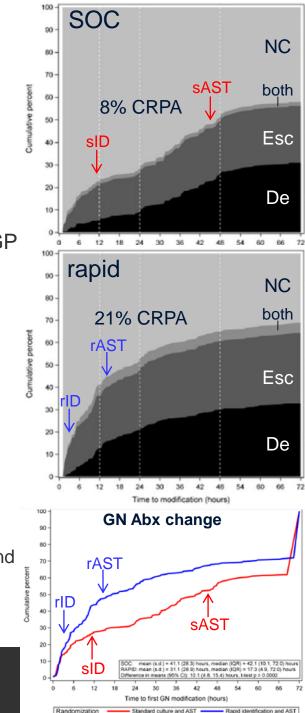
Proteus spp.

P. mirabilis

P. vulgaris

S. agalactiae S. gallolyticus S. mitis S. oralis S. pneumoniae

E. faecium

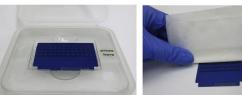

Enterococcus spp. other than *E. faecalis*

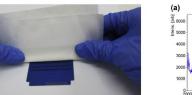
Accelerate performance

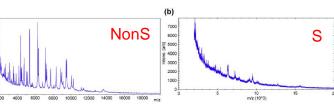
- Numerous analytical performance studies
 - Early problems with invalid results
 - software updates improved performance
 - Good categorical and MIC agreement
 - Faster than 'standard of care' AST
 - Most did <u>not</u> compare to 'rapid' standard AST (short incubation 'scum' plates, BC broth processing, direct disk diffusion)
- Outcome studies
 - Most have focused on 'stewardship' outcomes
 - Most showed reduced time to optimal therapy
 - Not always improvements in time to *active* therapy
 - ~70-90% of patients are on appropriate empiric Rx before testing
 - Some showed decreased time to Abx de-escalation/escalation

Accelerate outcomes

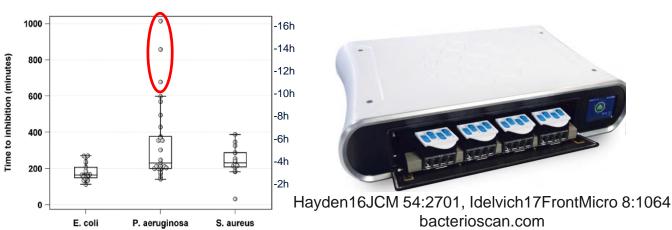
- Pearson et al poster:
 - Pre-post intervention; 24-7 Accelerate testing (± Real-Time calls to ASP) vs. standard O/N subculture-based ID/AST.
 - Significant 'stewardship' outcomes: time to/# on optimal Rx (-1d), days of Rx (-0.8,-1.6d), broad GN Rx (-1.5d), broad GP Rx/Vm (-1d, RT-only), narrow β-lactam Rx (+1d, RT-only)
 - Overall LOS after BC collection decreased significantly (-0.6,-1.4d), but ICU LOS did not (+0.5,+0.6d)
 - Cost not evaluated: 19% off-panel → 17% polymicrobial (excl.) = ~1/3 of runs excluded. 46% CoNS.
- Banerjee et al poster:
 - Multi-center prospective RCT, Gram negative BSI
 - Sig lower time to 1st GN Abx mod/de/escalation
 - ICU duration, C. diff/MDRO aquisition, LOS, mortality: Not Significantly different
 - Rapid group: more in ICU at randomization, ↑ CRPA, ↑ LOS and ↑ mortality (NonSig).
 - Sicker patients in rapid group? Charleston comorbidity/Pitt bacteremia scores ~same

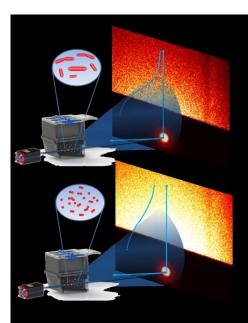





MALDI-TOF on-target AST

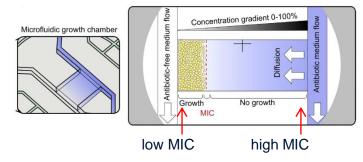
- Bruker MALDI Biotyper system
- Idelevich et al: Direct-On-Target Microbial Growth Assay (DOT-MGA)
 - Proof of principle 1 (CMI-isolates): K. pneumoniae and P. aeruginosa (24 ea) vs. 2µg/mL meropenem
 - 0.5 McF, dilute, mix w/ broth + mero, incubate on-target 3-18h
 - Liquid wicked off, dry, add matrix + protein std
 - Analyze with standard ID software: >1.7 ID score = growth (non-susceptibile)
 - 6 μL, 4h for *K. pne*, 5h for *P. aer*. 88-100% valid and 100% matched BMD (S vs. NonS)
 - Proof of principle 2 (JCM-blood cx): 28 enterics from spiked BC bottles vs. 2µg/mL meropenem
 - Compared 4 BC prep methods: dilution, filter-dilution, differential centrifugation, lysis-centrifugation
 - 1:10k dilution of BC, lysis-cent and diff cent had best composite performance
 - Dedicated software improved performance of lysis-cent to 96% valid, 100% sens/spec
- Correa-Martinez et al: DOT-MGA for MICs!
 - **Proof of principle:** 50 enterics vs. ESBL/AmpC screening panel
 - Growth patterns ± ESBL/AmpC inhibitors predicts resistance mechanism (EUCAST)
 - 94-100% pos/neg agreement with PCR after 4h; better than BMD or disk testing at 18h
- Bonus: like rapid DD, you may already have this capability in your lab!

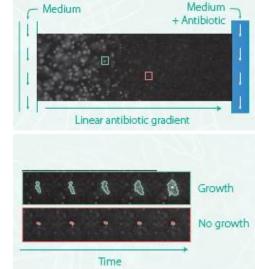

Idelevich18CMI 24:738, Idelevich18JCM 56:e00913, Correa-Martinez19FrontMicro 10:13


Processing	Validity	Sens	Spec
10k dilution	92.6	90.9	100
Lysis-cent	96.3	91.7	100
Diff-cent	96.3	83.3	100

Bacterioscan

- BacterioScan 216Dx UTI System
 - Optical density + forward laser scatter
 - Information on culture density and size/shape of bacterial cells
 - Accurate quantification
 - FDA-cleared instrument for pos/neg UTI calls no AST yet;
 \$20/cuvette, \$25k instrument
 - 16 tests/instrument = breakpoint panels or few drugs
- BacterioScan 216R Rapid AST System in development
 - Hayden et al:
 - Proof-of-principle, 3 isolates each: E. coli, P. aeruginosa, S. aureus.
 - 72/89% agreement with Vitek2/Microscan
 - 80% bug/drug combos interpretable <6h
 - Idelevich et al:
 - MRSA/MSSA and VRE/VSE, 50 isolates each
 - 98-100% sens, 92-94% spec; real-time curve data



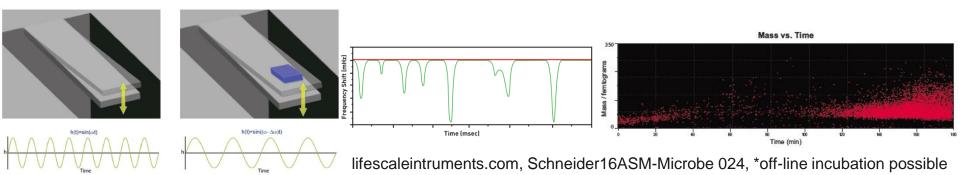


Gradientech

- Time-lapse microscopy, microfluidics
 - Suspend culture in agarose, auto-load into analysis cells (12 drugs + ctrl), auto-image analysis
- MICs derived from linear drug gradient
 - Change in greyscale (microcolonies) across cell
 - Analogous to Etest
- 2-5h AST from positive blood cultures
 - 1 specimen/module, ~\$35/test, ~\$13k/module
 - Unstandardized inoculum (spin→supe), can do isolates
 - Initially planned CE 2019, FDA 2020
- Malmberg et al:
 - Prototype/proof of principle; QC orgs and 13 +BC compared to Etest and broth macrodilution
 - 100% EA at 10⁵ cfu/ml, 77% from blood cultures
 - BC lower due to variable concentrations?

Q-Linea ASTar

- Time-lapse microscopy, automated sample processing
 - Fully-automated processing, analysis
 - Direct from positive blood cultures and isolates, other specimens planned
 - ~1min hands-on time
 - 3 to 6 hours, true MIC
 - 6-12 samples/instrument, random-access
 - Up to 50 samples per day
 - Up to 48 drugs, 5-11 two-fold dilutions
 - Can test fastidious species
 - Clinical trials begin 2nd half of 2020; version with ID + AST in development
- Klintstedt et al poster
 - Prototype/proof of principle; genuine (26) and spiked (~85) +BC
 - 92-96% EA, 93-97% CA; ceftaz 83% EA/CA, ceftolozane-tazo 75% EA



Lifescale

- Resonant mass measurement + cell counting
 - Bacterial cells reduce vibration frequency
 - Mass resolution ~1fg (~1% bacterial cell mass)
- Standard broth microdilution format (true MIC), 1 sample/instrument*
 - 100s-1000s of cells measured/well, ~35-60min read time/plate
 - ~\$125/test; \$125k/instrument
- 2-3.5h avg most GNR (some, incl. *P. aeruginosa*, may take longer)
- Schneider et al poster
 - Proof-of-principle, 58 GNRs QC and test isolates; Sensititre MIC panels, reference BMD
 - 95% within QC range (on-panel), 19/24 drugs ≥90% EA, 22/24 drugs ≥90% CA; ceftaz, ceftriax EA/CA 81-88%

Lifescale

- Positive blood culture panel
 - Gram negative rods
 - "simple centrifugation" sample prep
 - 14 antibiotics, MIC format
 - Interpretation based on external ID
 - On-scale QC
 - CE-marked

LABORATORIES

- Clinical trials ongoing

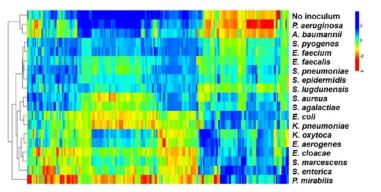
	1	2	3	4	5	6	7	8	9	10	11	12
A	MER0	FEP	AMI	ETP	LEV0	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	0.125	0.5	4	0.125	0.25	4	0.25	1	1	2	1	0.5
в	MER0	FEP	AMI	ETP	LEV0	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	0.25	1	8	0.25	0.5	8	0.5	2	2	4	2	1
С	MERO	FEP	AMI	ETP	LEVO	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	0.5	2	16	0.5	1	16	1	4	4	8	4	2
D	MERO	FEP	AMI	ETP	LEVO	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	1	4	32	1	2	32	2	8	8	16	8	4
Е	MERO	FEP	AMI	ETP	LEVO	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	2	8	64	2	4	64	4	16	16	32	16	8
F	MERO	FEP	AMI	ETP	LEVO	P/T	FAZ	AZT	TAZ	AMP	GEN	VAB
	4	16	128	4	8	128	8	32	32	64	32	16
G	MERO	FEP	AMI	ETP	LEV0	P/T	FAZ	AZT	TAZ	CZA	CZA	CZA
	8	32	256	8	16	256	16	64	64	8	16	32
н	MERO	FEP	SXT	SXT	SXT	SXT	SXT	SXT	CZA	CZA	POS	POS
	16	64	0.25	0.5	1	2	4	8	2	4	0	0

Growth Determination

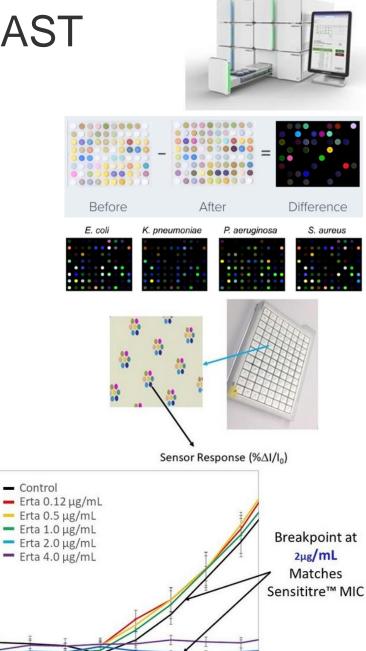
		offeri Decerminacion			
				Grow/	No Grow
Antibiotic (Panels)	Antibiotic Concentration	LS Concentration	Growth (Relative)	Grow	No Grow
Amikacin	8	9.05e+05	1.463879419		-
	16	5.27e+05	0.852498249		-
	32	3.51e+05	0.568136633		-
	64	4.21e+05	0.680526035		-
Ampicillin	4	2.23e+07	36.108113016	-	
	8	2.87e+07	46.477172006	-	
	16	3.00e+07	48.529097744	-	
	32	2.76e+07	44.711051278	-	
Ampicillin/Sulbactam	4	2.57e+07	41.632923583	-	
	8	6.59e+06	10.658191840	-	
	16	7.79e+05	1.260586576		-
	32	3.84e+05	0.621812265		-
Aztreonam	2	5.75e+05	0.929495336		-
	4	1.25e+06	2.028572997		-
	8	1.56e+06	2.521264693		-
	16	1.48e+06	2.396693694		-
	32	1.36e+06	2.203947495		-
Cefazolin	0.5	3.00e+07	48.529097744		
		A A.A	IN PARAMETERS		

lifescaleintruments.com

Specific Reveal-AST


Sensor Response (%ΔI/I₀) From sensor 6R

4


2

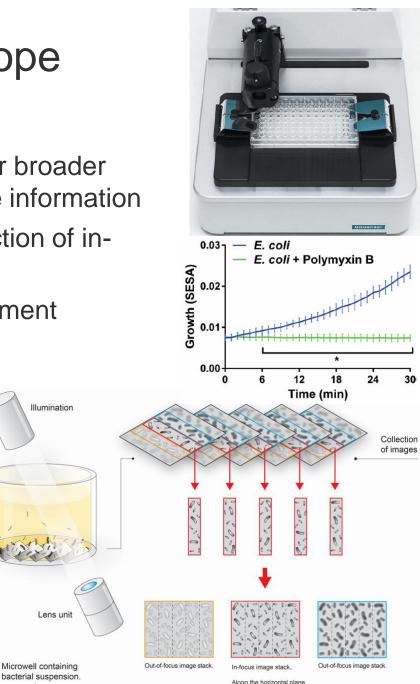
1.5

- Volatile Organic Compound detection
 - Colorimetric Sensor Arrays detect headspace VOCs over time
 - − Direct from +BC (dilute \rightarrow test) or isolates
 - 3-4h avg time to results, MIC format
 - Inexpensive FIND/NIH funding for resource-limited setting platform
- Singh et al, poster
 - Proof of principle, 29 spiked BC bottles
 - 100% EA, 97% CA vs. BMD in ≤ 3h
 - ID for free by 4h from growth control

Lonsdale13PLoSOne 8:e62726, Lim14JCM 52:592, Singh17Microbe CPHM LB1, specificdx.com

Time (hours)

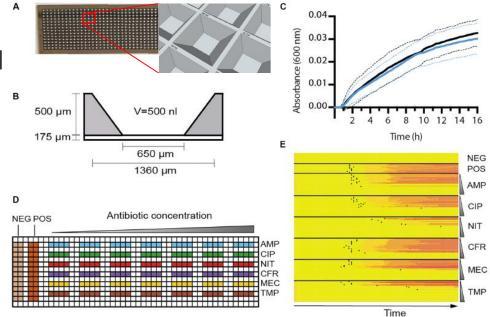
2.5

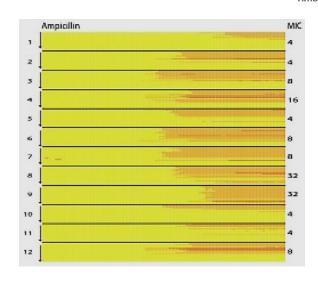

3

3.5

oCelloScope

- Angled bright-field microscopy
 - 6.25° tilt improves performance over broader concentration range; volume, phase information
 - Z-stack of images, automated detection of infocus region
 - 96-well MIC format, 1 sample/instrument
 - 1-4.5h avg time to results
 - No plans for IVD approval
- Fredborg et al 2015:
 - Proof-of-principle, 16 samples
 - QC, clinical isolates, and +BCs
 - 93% overall EA/CA
 - 95% of results in <3h (avg 100min)

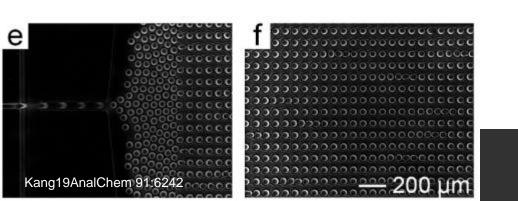

all the bacteria are caught in focus

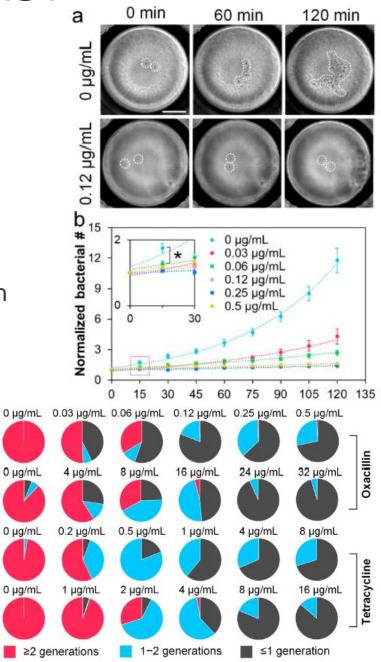

Fredborg13JCM 51:2047, Fredborg15EJCMID 34:2385, biosensesolutions.dk/technology

Nanowell AST

- nwAST (Broth nanodilution?)
 - Etched silica wells (672) attached to standard glass slide
 - Standard BMD conditions except 500nl wells, automated A₆₀₀
 - Compatible with imaging
 - 5-6h, true MIC, with replicates
 - time to growth drug vs. no drug (ΔT_{lag})
- Veses-Garcia et al
 - Prototype/proof-of-principle
 - 70 UPEC isolates, nwAST vs. disk diffusion
 - 98% overall CA; amp 8% false R
 - 5 other UTI pathogens grow well in nanowell format
 - More variable than desired

Nanodroplet AST


aureus


E.faecalis

E.coli

K.pneumoniae

- Kang et al
 - Prototype/proof of principle
 - 8000 \leq 60 μ m droplets x 4 separate cells
 - 4 drug concentrations per unit
 - Very rapid (<60 min)
 - Individual droplet and cell analysis
 - Time lapse microscopy ≥ 100 per condition
 - Statistics
 - Limited testing to date
 - S. aureus, E. faecalis vs. oxacillin
 - E. coli, K. pneumoniae vs. tetracycline

Summary

- Current rapid molecular "AST" has a measurable, but not always significant effect on patient outcomes
 - May not be substantial enough to overcome empiric choices
 - Faster probably won't help
 - More information may help
- Rapid phenotypic AST methods in development hope to fill this gap
 - Commercial systems with full, final results in <4h may be available soon
 - 4-12h already available: Vitek, Phoenix, Microscan. Set up from BC 'scum' plate.
 - Accelerate, ≤7h to fairly complete AST results
 - FDA cleared for positive blood cultures
 - Single-cell or micro/nano-scale methods can improve time to results
 - Direct from specimen is the ultimate goal
 - Not there yet, but direct from urine testing is likely
 - Imaging methods hold promise: analyze mixed morphotypes
- Regardless of method, work with stewardship and other stakeholders to maximize impact of rapid AST

