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“Top-down” approach of investigating a disease
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Omics microbiomeSNP/CNV

“Bottom-down” approach of investigating a disease
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Systems Medicine: integrative systems-level analytics for 
individualized treatments
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Correlation-based methods

• They are simple and thus very attractive

• They tend to overestimate the number of true 
connections
• So we need to use prior or expert information to 

find testable hypotheses
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Chan and Loscalzo, 2012, Circulation Research

Chan and Loscalzo, 2012, Circulation Research



mirConnX: correlations with priors for miRNA:mRNA networks
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Discovery of important network module in 
Idiopathic Pulmonary Fibrosis (IPF)
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Downregulation of let-7d in IPF patients and in mice

© Benos lab / Univ of Pittsburgh 2014-2019

let-7d



Downregulation of let-7d in IPF patients and in mice
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Correlations: what can and can not do

They are easy to calculate and intuitive and can be very useful

Provide all variables possibly related to our target variable

• …and then some

XGenerate many ”false positive” edges
• In the previous example, TGF-β and EMT were also correlated (pairwise) to let-7d
• We needed prior biological knowledge to guide experiments

• Correlation vs causation
• Causation  Correlation
• Correlation does not prove causation (intervening experiments)
• Example: smoking in the 50s

© Benos lab / Univ of Pittsburgh 2014-2019

let-7d



Correlation does not (always) imply causation

• A physician in the 50s may have noticed

© Benos lab / Univ of Pittsburgh 2014-2019

Lung cancer Tar-stained fingers

These is no causal link between these variables!

Smoking
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Slide modified from Richard Scheines

Regression models… (should be used with caution)

𝑌 = 𝛽0 +
𝑖=1

𝑁

𝛽𝑖𝑥𝑖 + 𝜀
𝑌 = 𝛽0 +

𝑖=1

𝑁

𝛽𝑖𝑥𝑖 + 𝛽𝑎𝑔𝑒𝑥𝑎𝑔𝑒 + 𝛽𝑠𝑚𝑘𝑥𝑠𝑚𝑘 +⋯+ 𝜀

Data from: American Sociological Review, 1984, vol 49, pp. 141-146

Model’s fit:

p-value=0.94

EN FI CL

PE

-0.48 0.86

0.31 -0.23

CAUSAL MODEL

Coefficient not 0:

p-value=0.0002

EN FI CL

PE

-0.176 0.227
0.880

REGRESSION MODEL



Regressions: what can and can not do

They are intuitive and flexible

Relatively fast to calculate

Provide relative contributions of all predictors to the target variable

X In practice, it is not easy to implement interactive terms on predictors when number 
of predictors is large
• This may result in misleading coefficients
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Some machine learning methods
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ML “black box” methods: what can and can not do

Can model non-linear effects

Very good for classification purposes (given enough data)

X They typically require large amounts of data

X Interpretability is not straightforward

© Benos lab / Univ of Pittsburgh 2014-2019
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Overview of the talk

• Discuss the probabilistic graphical models (PGMs) approach
• What PGMs are  / does it matter what type of variables I have?

• How can we train them and interpret the results (with caution!)

• How can we incorporate prior information

• Applications of graphical models in biomedical and clinical research
• Clinical: Predicting lung cancer from low-dose CT scan and clinical data

• Personalized medicine: A SNP that predicts response to chemotherapy

• Clinical: Determinants of longitudinal lung function decline in COPD patients

• Microbiome: Microbiota and clinical variables that predict culture positivity 
in lung ICU patients
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What PGMs are: some definitions

• A graph consists of a set of nodes (variables), some of which are connected 
through edges
• Edge connections imply information transfer

• Two variables are connected when they have unique information for each other, not present 
in any other variable

• Probabilistic graphical model (PGM) is a model of the data in which a graph 
represents the conditional (in)dependencies between variables
• PGMs can be undirected or directed

• Undirected: easier to calculate, but contain FP edges

• Causal graphs are directed acyclic graphs (DAGs)

© Benos lab / Univ of Pittsburgh 2014-2019
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History of PGMs and past successes

• The development of PGMs started in mid-90s

• First books published in 2000

• Application of Bayesian networks to infer gene 
regulatory networks in yeast. [Friedman, Science, 
2004]

• Application of causal learning methods to 
proteomics data [Sachs et al, 2005]
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History of PGMs and past successes

• Eric Schadt applies causal graphs for identification 
of causal SNPs [Schadt et al, Nat Genet, 2005]
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PGM underlying assumption: a causal graph generates the data
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Graph adjacency learning using conditional independencies
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Properties and Drawbacks of Graphical Models

• They can distinguish between direct and indirect effects

• They are asymptotically correct. 😄

• The output graph can be used for predictive models

• They have some non-realistic assumptions (but they can be relaxed)

• Variables are either all continuous or all discrete
• All common causes are measured (no latent confounders)
• All continuous variables should be normally distributed
• There are no cycles in the graph

• Additional considerations
• Relatively slow (heuristics are needed)
• Parameter setting
• Incorporating priors

© Benos lab / Univ of Pittsburgh 2014-2019
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Edge prediction accuracy in DAGs (100 nodes, Gaussian)
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“Essentially all models are wrong, 
but some are useful”

George E.P. Box



Researcher dream analysis pipeline
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piMGM: MGM with prior information

DATA GENERATING 
GRAPH

21

6

7

43

5 {1,3, 100%}
{5,4,90%}

{6,7, 80%}
{4,7, 95%}

Goals
1. Estimate Reliability of each “expert”
2. Construct a properly weighted combined prior
3. Learn an informed undirected model using this prior

Slide adapted from Vineet Raghu, Benos Lab
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piMGM Correctly Evaluates the Reliability of Experts

Vineet Raghu

© Benos lab / Univ of Pittsburgh 2014-2018

Slide courtesy of Vineet Raghu, Benos Lab
Manatakis*, Raghu*, Benos, 2018, Bioinformatics. 



piMGM Overcomes Unreliable Priors

Experts Give Prior for Real Edges Experts Give Prior for Any Edge
Vineet Raghu

© Benos lab / Univ of Pittsburgh 2014-2018

Slide courtesy of Vineet Raghu, Benos Lab
Manatakis*, Raghu*, Benos, 2018, Bioinformatics. 



Use “expert evaluation” as a way to evaluate pathway significance

• Use the expert evaluation method to:
• Identify active pathways in disease (by evaluating edge presence)

• Learn high confidence gene-gene interactions

• Example: breast cancer (TCGA), ER+ and ER- cases

© Benos lab / Univ of Pittsburgh 2014-2018

Pathway p-value 
(ER+)

p-value 
(ER-) Reference

Glutathione Metabolism 0.507 0.091 (Lien, et al., 2016)

Glycolysis 0.000 0.129 (Schramm, et al., 2010)

Neurotrophin signaling 0.702 0.074 (Patani, et al., 2011)

Notch signaling 0.000 0.223 (Hossain, et al., 2017)

Pentose Phosphate 0.025 0.239 (Cha, et al., 2017)

B Cell Receptor signaling 0.141 0.004 (Hill, et al., 2011)

Insulin signaling 0.098 0.384

T cell receptor signaling 0.507 0.058

Manatakis*, Raghu*, Benos, 2018, Bioinformatics. 



piMGM can accurately determine the reliability of prior information sources on 
simulated and real data

piMGM is resilient to unreliable priors when learning network structure

The benefits of using prior information to learn network structure are greatest in 
high-dimensional, low sample size cases

© Benos lab / Univ of Pittsburgh 2014-2018

Summary of piMGM results

Manatakis, D.*, Raghu, VK.*, and Benos, PV, 2018, Bioinformatics. 
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Overview of the talk

• Discuss the probabilistic graphical models (PGMs) approach
• What PGMs are  / does it matter what type of variables I have?

• How can we train them and interpret the results (with caution!)

• How can we incorporate prior information

• Applications of graphical models in biomedical and clinical research
• Clinical: Predicting lung cancer from low-dose CT scan and clinical data

• Personalized medicine: A SNP that predicts response to chemotherapy

• Clinical: Determinants of longitudinal lung function decline in COPD patients

• Microbiome: Microbiota and clinical variables that predict culture positivity in 
lung ICU patients
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Applications of CausalMGM in (Bio)Medicine

• Early disease diagnosis
• Lung cancer detection (LDCT scans +  comorbidities)

• Identifying biomarkers indicative of treatment response and 
alternative treatments
• Melanoma chemotherapy (multi-omics data)

• Identifying factors affecting disease progression
• FEV1 decline in COPD patients (clinical variables)

• Disease diagnosis
• Pneumonia detection in ICU (microbiome + clinical data)

© Benos lab / Univ of Pittsburgh 2014-2019
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Factors determining malignancy of a lung nodule from 
low-dose CT scan and clinical data

© Benos lab / Univ of Pittsburgh 2014-2019

In collaboration with:

David Wilson MD

Vineet Raghu

Jiantao Pu PhD



Low dose CT scan screening reduces lung cancer mortality
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• Follow-up CTs
• Unnecessary invasive biopsies 

• with potential serious complications
• Anxiety
• Increased healthcare costs 



Pittsburgh Lung Screening (PLuSS) cohort
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A. Training 
Lung cancer 

(n = 50)

Benign nodules 

(n = 42)
P value†

Male, n (%) 25 (50) 28 (67) 0.162

Age (years), mean (SD) 63.6 (7.1) 65.2 (6.9) 0.261

Current smoker, n (%) 32 (64) 19 (45) 0.111

Pack-Years, mean (SD) 60.35 (24.11) 61.81 (22.81) 0.766

Years since quit smoking, mean (SD) 1.52 (2.88) 3.25 (3.95) 0.020

Nodule size in diameter (mm), mean (SD) 13.43 (6.14) 9.74 (6.69) 0.007

Nodule number, n (%) ° 0.203

Solid 28 (56) 34 (81)

Non-solid/mixed 22 (44) 8 (19)

Vessel number, mean (SD) 9.22 (9.48) 2.26 (2.21) <0.0001

B. Validation  (PLuSS-X)
Lung cancer 

(n = 44)

Benign nodules 

(n = 82)
P value†

Male, n (%) 23 (52) 48 (59) 0.626

Age, mean, years (SD) 65.23 (9.62) 66.93 (7.54) 0.313

Current smoker, n (%) 37 (84) 36 (44) <0.0001

Pack-Years, mean (SD)* 49.41 (22.79) 49.49 (22.0) 0.985

Years since quit smoking, mean (SD) 0.477 (1.50) 3.037 (4.33) <0.0001

Nodule size in diameter (mm), mean (SD) 18.86 (7.12) 11.57 (5.76) <0.0001

Nodule number, n (%) ° 0.981

Solid 28 (78) 54 (68)

Non-solid/mixed 8 (22) 25 (32)

Vessel number, mean (SD) 18.57 (5.21) 3.02 (3.98) <0.0001

Raghu, et al, 2019, Thorax, in print

n=92 n=126



LCCM: a CausalMGM-based lung cancer predictor from low-
dose CT scan data

© Benos lab / Univ of Pittsburgh 2014-2019
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Model No. of 
Features

AUC (95% CI) p-value Features Used

MGM-FCI-MAX 
features

3
0.882 

(0.789, 0.975)
- Smoking: Years Quit

Radiographic: Nodule Count, Vessel Number

Brock Full Features 8
0.792 

(0.699,0.885)

0.16 Demographics: Age, Sex, Family History Ca
Comorbidities: Emphysema
Radiographic: Nodule Size, Nodule Type, Nodule Location, 
Nodule Count

Brock Parsimonious 
Features

3
0.700 

(0.607,0.793)
0.01 Demographics: Sex

Radiographic: Nodule Location, Nodule Size

Bach Features 5
0.722 

(0.629,0.815)
0.02 Demographics: Age, Sex

Smoking: Cigarettes Per Day, Smoke Duration, Years Quit

PLCO Features 10
0.5613 

(0.412,0.701)

<0.001 Demographics: BMI, Education, Family History Ca, Race
Comorbidities: Ca History, COPD
Smoking: Duration, Intensity, Smoking Status, Years Quit

LCCM outperforms existing lung cancer predictors (cross-validation)

© Benos lab / Univ of Pittsburgh 2014-2019

Raghu, et al, 2019, Thorax, in print

Predictors 
Coefficient  

(95% CI) 
p-value 

Years since quit smoking -0.178 (-0.349, -0.007) 0.041 

Number of Vessels 0.238 (0.074, 0.510) 0.009 

Number of Nodules -0.203 (-0.325, -0.081) 0.001 

Model Intercept 1.053  

   

 



LCCM outperforms existing lung cancer predictors (external cohort)

© Benos lab / Univ of Pittsburgh 2014-2019

Raghu, et al, 2019, Thorax, in print

p = 0.018

p < 0.01



LCCM can help reduce unnecessary follow up screenings

© Benos lab / Univ of Pittsburgh 2014-2019

28%

Raghu, et al, 2019, Thorax, in print



Making some noise…
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What we learned from the LCCM study?

• Vasculature around a nodule and total number of 
nodules are important discriminants of nodule status

• LCCM in the future may help reduce unnecessary follow 
up screens for 28% of the benign nodule subjects

© Benos lab / Univ of Pittsburgh 2014-2019

28%
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A SNP that predicts response to chemotherapy and 
suggests new combination therapy

© Benos lab / Univ of Pittsburgh 2014-2019

Hussein Tawbi MD

AJ Sedgewick PhD

In collaboration with:

Disclosure:
US Patent Application No. 15/524,242, filed May 3, 2017



DNA methylation

mRNA expression

DNA polymorphism

• Metastatic melanoma Pittsburgh cohort

• Subjects:
• 69 subjects

• Demographics and response to TMZ 
treatment

• Data acquisition from tumor:
• Gene expression

• miRNA expression

• DNA methylation

• SNP assay (selected SNPs)

© Benos lab / Univ of Pittsburgh 2014-2019

Identify cancer chemotherapy biomarkers
Hussein Tawbi MD

p=10-5

Abecassis*, Sedgewick*, …, Benos¶, Tawbi¶, 2019,  Sci Rep, 9:3309
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p=0.03 p=0.01 p=0.02

DNA damage DNA damage DNA replication inhibitionMethod of action

AJ Sedgewick PhD

Alkylating agents induce the strongest changes in drug 
sensitivity between carriers/non-carriers

Abecassis*, Sedgewick*, …, Benos¶, Tawbi¶, 2019,  Sci Rep, 9:3309



• The PARP1 SNP is directly related to improved DNA damage repair
• Improved DNA damage repair  worse response to chemotherapy

• Testing:
Treat cells with PARP inhibitor (PARPi)  do SNP cells require lower doses of 
alkylating agent than WT cells?   (lower IC50)

© Benos lab / Univ of Pittsburgh 2014-2019

Hypothesis (testable)
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PARP-1 inhibition increases chemo efficiency to cell lines 
with the SNP

H
5

2
2

SW
6

2
0

WT

A
2

7
8

0
M

1
4

SNP carriers

Andreas Vogt PhD

synergy

synergy

additive

antagonism

Abecassis*, Sedgewick*, …, Benos¶, Tawbi¶, 2019,  Sci Rep, 9:3309



• The PARP1 SNP is directly related to improved DNA damage repair
• Improved DNA damage repair  worse response to chemotherapy

• Testing:
Treat cells with PARP inhibitor (PARPi)  do SNP cells require lower doses of 
alkylating agent than WT cells?   (lower IC50)

• Result:

A PARP1 SNP may be suitable for patient stratification and deciding 
optimal therapeutic intervention
• SNP carriers  combination therapy w/ FDA-approved olaparib

• wt patients  no PARP1 inhibitor

© Benos lab / Univ of Pittsburgh 2014-2019

Hypothesis (testable)



What we learned from the PARP1 study?

• PARP1 SNP rs1805407 is linked to poor response to 
chemotherapy

• PARP1 inhibitors and alkylating agents act synergistically on 
SNP carrier cell lines

• PARP1 inhibitors make SNP carrier cell lines more sensitive to 
chemotherapy, indicating potential new therapeutic strategy

© Benos lab / Univ of Pittsburgh 2014-2019



Determinants of longitudinal lung function decline in 
COPD patients

© Benos lab / Univ of Pittsburgh 2014-2019

In collaboration with:

Frank Sciurba MD

Ivy ShiKristina Buschur



COPD progression (COPDGene® cohort)
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Graph source: COPDGene®
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• SCCOR (Pittsburgh Specialized Center of Clinically Oriented Research)

• Subjects:
• 762 subjects (community-based, tobacco-exposed cohort) 

• 385 subjects returned for a 2-year follow-up evaluation

• Data acquisition in visit-1:
• Demographics

• Spirometry (pre- and post-bronchodilators)

• Semi-quantitative visual and quantitative MDCT

• Blood biomarkers

• Exercise testing

• Questionnaire

© Benos lab / Univ of Pittsburgh 2014-2019

Frank Sciurba MD

FEV1 progression in COPD patients (SCCOR cohort)

Questionnaire:
- Patient’s history of other diseases (asthma, etc)
- Environmental (asbestos, arsenic, etc)
- Symptoms (coughing, dyspnea, etc)
- Psychological
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Ivy Shi

Integrating multi-modal datasets with probabilistic models

All baseline variables + ΔFEV1



Clinical and blood biomarker variables 
linked to FEV1 decline in COPD

© Benos lab / Univ of Pittsburgh 2014-2019

Environmental	factors

Spirometry	variables
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Other	conditions

Smoking-related
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Kristina Buschur

Sedgewick et al, Bioinformatics, 2018.
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What we learned from the COPD study?

• Creatinine and TNF-α are directly linked to longitudinal 
lung function decline in COPD patients
• Creatinine may be linked to muscle loss

• TNF-α is linked to inflammation: can inflammation reduction 
help delay lung function decline?

• Reducing GERD exacerbations may help delay lung 
function decline

© Benos lab / Univ of Pittsburgh 2014-2019
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Microbiota and clinical variables that predict culture 
positivity in lung ICU patients
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George Kitsios MD

Alison Morris MD
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Can we predict Cx positivity in ICU patients from lung 16S 
microbiome?

Kitsios et al, “Respiratory microbiome profiling for etiologic diagnosis of pneumonia in 
mechanically ventilated patients”, 2018, Frontiers in Microbiol

George Kitsios MD

16S rRNA



Lung ICU patient cohort: microbiome profiles and Cx positivity
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George Kitsios MD

Kitsios et al, 2018, Frontiers in Microbiol



Variables directly linked to ICU patient culture positivity
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Dimitris Manatakis PhD

Kitsios et al, 2018, Frontiers in Microbiol



Variables directly linked to ICU patient culture positivity
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Dimitris Manatakis PhD

Kitsios et al, 2018, Frontiers in Microbiol



Some results from the ICU culture positivity study

• The microbial communities in 20% (9/44) of culture negative 
patient samples are dominated by pathogenic taxa 
(Staphylococcus, Pseudomonas)

• Using the network model we can predict culture positivity with an 
average accuracy of 83% (±7%)

• The 16S method is promising for prediction culture positivity in 
ICU patients

© Benos lab / Univ of Pittsburgh 2014-2018

Kitsios et al, 2018, Frontiers in Microbiol



CausalMGM is a highly  flexible framework that can be used to 
analyze multi-modal and multi-scale data

CausalMGM has the ability to efficiently  incorporate prior 
information to learn more accurately graphs in high-dimensional 
data

© Benos lab / Univ of Pittsburgh 2014-2019

Take home messages
COMPUTATIONAL 

RESEARCH

THEORY



CausalMGM has been successfully applied to a variety of medical 
problems:
We developed a new accurate predictor of lung cancer from clinical and 

LDCT scan data, which has the potential of reducing unnecessary 
procedures in subjects with benign nodules

We identified a PARP1 SNP that is a marker for no response to 
chemotherapy and we’ve shown evidence to suggest that the SNP carriers 
may benefit from combination therapy (chemo + PARP1 inhibitors)

We identified blood biomarker proteins and comorbidities that are 
directly linked to longitudinal lung function decline in COPD patients 
(creatinine, TNF-α, GERD, etc)

We identified microbiome taxa and clinical variables that are indicative of 
culture positivity in ICU patients

© Benos lab / Univ of Pittsburgh 2014-2019
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Postdoc positions available in Benos’ Lab
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Developing causal graphical models for integrating biomedical and 
clinical Big Data

Takis Benos (benos@pitt.edu)
Department of Computational and Systems Biology

University of Pittsburgh

benos@pitt.edu

http://www.benoslab.pitt.edu



Many thanks to…

© Benos lab / Univ of Pittsburgh 2014-2019

Georgios Deftereos, MD



Questions???
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