Appropriate utilization of drug tests for pain management patients

Gwen McMillin, PhD, DABCC (CC, TC)
Medical Director, Toxicology, ARUP Laboratories
Associate Professor (clinical), University of Utah
Drug testing in pain management

- Baseline testing
- Routine testing
 - Periodic, based on patient risk assessment
 - To evaluate changes
 - Therapeutic plan (drugs, formulations, dosing)
 - Clinical response (poor pain control, toxicity)
 - Clinical events (disease, surgery, pregnancy)
 - Patient behavior
Objectives of drug testing

- Detect and encourage appropriate drug use
- Detect and discourage inappropriate drug use
Traditional approach

- Immunoassay-based screen
- Confirm positive results with a mass spectrometric method (GC-MS, LC-MS)

Not appropriate for pain management

- Need to confirm positive screen results is limited to certain drug classes
- Confirmation of negative screen results may be important
- Immunoassays are not useful for detection of all drugs of interest
Positivity rates in urine drug testing for pain management

- ~80% of urine specimens collected for the purpose of adherence testing are positive
- <5% of positive results fail to confirm, with the exception of amphetamine tests
- False negative results occur frequently
Positive results “missed” by immunoassay vs LC-MS/MS

<table>
<thead>
<tr>
<th>Compound</th>
<th>Immunoassay cutoff (ng/mL)</th>
<th>LC-MS/MS cutoff (ng/mL)</th>
<th>% missed by immunoassay (total n ~8000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeine</td>
<td>300</td>
<td>50</td>
<td>29.6% (45)</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>50</td>
<td>50</td>
<td>23.3% (701)</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>50</td>
<td>50</td>
<td>69.3% (1878)</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>200</td>
<td>20</td>
<td>53.3% (646)</td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>40</td>
<td>40</td>
<td>40.0% (320)</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>40</td>
<td>40</td>
<td>66.1% (119)</td>
</tr>
</tbody>
</table>

Mikel et al., *TDM* 31(6):746-8, 2009
West et al., *Pain Physician* 13:71-8, 2010
Immunoassay detection

- Cutoff
- Calibrator
- Cross-reactivity profile of the immunoassay

SAMHSA cutoff: 2,000 ng/mL

Medical immunoassay cutoff: 300 ng/mL

Medical LC-MS/MS cutoff: 10 ng/mL
Concentrations (ng/mL) required to trigger a positive opiate (300 ng/mL cutoff)

<table>
<thead>
<tr>
<th>Drug</th>
<th>EMIT</th>
<th>CEDIA</th>
<th>Triage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Codeine</td>
<td>247</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>6-monoacetylmorphine</td>
<td>1088</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>364</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>498</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>5,388</td>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>>20,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Noroxymorphone</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Concentrations (ng/mL) required to trigger a benzodiazepine positive \((300\text{ ng/mL cutoff})\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EMIT</th>
<th>Nex Screen</th>
<th>Triage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>79</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Alpha-OH-alprazolam</td>
<td>150</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>500</td>
<td>5,000</td>
<td>650</td>
</tr>
<tr>
<td>7-amino-clonazepam</td>
<td>11,000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlordiazepoxide</td>
<td>7,800</td>
<td>8,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>140</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>Diazepam</td>
<td>120</td>
<td>2,000</td>
<td>200</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>350</td>
<td>300</td>
<td>3,500</td>
</tr>
<tr>
<td>Temazepam</td>
<td>210</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>890</td>
<td>4,000</td>
<td>200</td>
</tr>
</tbody>
</table>

False negatives likely
Drugs that could cause a false positive amphetamine test

- N-acetylprocainamide
- Chlorpromazine
- Phenylpropanolamine
- Brompheniramine
- Trimethobenzamide
- Pseudoephedrine
- Tolmentin
- Propylhexedrine
- Ranitidine
- Labetalol
- Perazine
- Promethazine
- Quinicrine
- Buflomedil
- Fenfluramine
- Mephentermine
- Phenmetrazine
- Tyramine
- Ephedrine
- Talmetin
- Nylidrin
- Isoxsuprime
- Chloroquine
- Isomethetime
- Mexiletine
- Phentermine
- Ritodrine

Adapted from: Broussard L, Handbook of Drug Monitoring Methods, Humana Press, 2007
Performance challenges

- Cutoff discrepancy
- Test not designed to detect drug

Poor specificity
- Cross-reactivity profile
- Calibrator

Poor sensitivity

Poor agreement
- Unexpected ("false") results
- Poor alignment of confirmation test
Impact of traditional approach

- Inappropriate selection and interpretation of screen results
- Inappropriate selection and interpretation of confirmation tests
- Unnecessary costs of testing associated with inappropriate testing
- Poor patient-provider-laboratory relationships
Evolving approach

- Understand needs
- Understand testing options and limitations
- Select best test
- Evaluate results
- Targeted testing for unexpected or inadequate results, or when quantitation is needed
Case Example 1

• Pharmacy history
 – Prescribed methadone and lisdexamfetamine dimesylate

• Screen results
 – **POSITIVE** for methadone, amphetamine, and THC
 – **NEGATIVE** for methamphetamine, oxycodone, opiates, and all other drug classes tested

• Patient history
 – Admits to occasional use of marijuana (THC)
Case Example 1 (cont)

• Interpretation based on expectations:

 Results are consistent with expectations

 – Confirmation tests not needed
 – Document results of investigation and final interpretation

• Reflex testing approach:

 – 3 confirmation tests would have been ordered
 – Additional office visit(s) may have been required

 Unnecessary expenses!!!
Case Example 2

• Pharmacy history
 – Prescribed oxycodone, hydrocodone, clonazepam, and methylphenidate

• Screen results
 – **POSITIVE** for oxycodone and opiates
 – **NEGATIVE** for benzodiazepines, amphetamines, and all other drug classes tested

• Patient history
 – Insists on adherence to prescribed therapy
Case Example 2 (cont)

• Interpretation based on expectations: results are NOT consistent with expectations

• Post-analytical investigation (laboratory):
 – Clonazepam sensitivity of the benzodiazepine screening test that was used is poor
 – Methylphenidate is not detected by the screen
Case Example 2 (cont)

• Interpretation based on expectations:
 results are consistent with expectations

• Post-analytical investigation (laboratory):
 – Clonazepam sensitivity of the benzodiazepine screening test that was used is poor
 – Methylphenidate is not detected by the screen
Case Example 2 (cont)

Recommendation:
– Confirm periodically, if concern arises, and/or if results impact clinical management decisions
– Document results of investigation and final interpretation

• Reflex testing approach:
 – 1 confirmation test would have been ordered
 – 2 possible false negative results remain unresolved
 – Could compromise patient care and relationship between the physician and the laboratory
Is adulteration testing necessary?
Adulteration in urine drug testing

• Reduce signal/noise
 – Dilute specimen
 – Increase analytical noise

• Prevent drug-antibody interactions
 – Charge interactions (pH)

• Destroy drug analytes

• Mimic drug use
 – Urine substitution
 – Direct addition of drug to urine
Examples of urine substitutes

- Beverages
- Animal urine
- Synthetic urine
- Human urine
 - Purchased
 - Obtained from friend or relative
 - Archived by patient
Common forms of adulteration testing

- Temperature
- Visual inspection
- Creatinine
- Specific gravity
- Nitrates
- Oxidants

Will these tests detect urine substitution or direct addition of drug to the urine?
Substitution may not be detected

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Check (%) Microgenics, CEDIA</th>
<th>Creatinine (mg/dL) Syva (Dade), EMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human urine</td>
<td>80-100</td>
<td>> 5 (DOT)</td>
</tr>
<tr>
<td>Dog urine (n=7)</td>
<td>52 - 85</td>
<td>87 - 284</td>
</tr>
<tr>
<td>Horse urine (n=1)</td>
<td>92</td>
<td>104</td>
</tr>
<tr>
<td>Energy drinks (n=44)</td>
<td>72-103</td>
<td>0-63</td>
</tr>
<tr>
<td>Margarita mix (n=2)</td>
<td>73-74</td>
<td>71-76</td>
</tr>
<tr>
<td>Fruit juice (n=8)</td>
<td>39-81</td>
<td>0-62</td>
</tr>
</tbody>
</table>

Simplified metabolism of Suboxone® and proportions in urine

- 4% Buprenorphine
- <1% Naloxone (4:1)
- 39% Buprenorphine glucuronide
- 46% Norbuprenorphine glucuronide
- 11% Norbuprenorphine

4% Buprenorphine
<1% Naloxone (4:1)
Results suggest drug was added

<table>
<thead>
<tr>
<th></th>
<th>BUP (ng/mL)</th>
<th>NORBUP (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39,400</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>39,200</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>31,100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20,200</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>19,300</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>18,800</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>15,000</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>12,100</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>11,100</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>10,900</td>
<td>7</td>
</tr>
</tbody>
</table>

NOTES: Glucuronides were < 20 ng/mL

McMillin et al., JAT 36(2):81-7, 2012
Results suggest drug was added

<table>
<thead>
<tr>
<th></th>
<th>BUP (ng/mL)</th>
<th>NORBUP (ng/mL)</th>
<th>Naloxone (ng/mL)</th>
<th>BUP: Naloxone Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39,400</td>
<td>24</td>
<td>6,690</td>
<td>5.9</td>
</tr>
<tr>
<td>2</td>
<td>39,200</td>
<td>36</td>
<td>9,560</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>31,100</td>
<td>20</td>
<td>8,500</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>20,200</td>
<td>23</td>
<td>5,160</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>19,300</td>
<td>11</td>
<td>4,470</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>18,800</td>
<td>31</td>
<td>4,430</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>15,000</td>
<td>7</td>
<td>2,300</td>
<td>6.5</td>
</tr>
<tr>
<td>8</td>
<td>12,100</td>
<td>14</td>
<td>3,110</td>
<td>3.9</td>
</tr>
<tr>
<td>9</td>
<td>11,100</td>
<td>12</td>
<td>2,920</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>10,900</td>
<td>7</td>
<td>3,010</td>
<td>3.6</td>
</tr>
</tbody>
</table>

McMillin et al., *JAT* 36(2):81-7, 2012

NOTES:

Expected ratio of BUP:Naloxone for Suboxone® = 4

Average ratio of BUP:Naloxone for these patients: 4.4
Why use blood for drug testing?

- Urine substitution is suspected
- Dialysis patients
- Evaluate pharmacokinetics
 - Unpredictable drug absorption (e.g. bariatric surgery, Crohn’s disease)
 - Suspicious drug delivery/bioavailability
 - Polypharmacy (drug-drug interactions)
 - Altered metabolic status
 - TDM
Conclusions

• Clinical laboratories are in an excellent position to actively participate, and/or consult, regarding the drug testing needs of chronic pain management patients.

• Utilization of testing should be based on the clinical needs and test performance characteristics, rather than traditional reflex testing approaches.