Clinical Sequencing by Sanger: State of the Art in a Next-Gen World

Elaine Lyon, PhD
Associate Professor of Pathology
University of Utah
Medical Director of Molecular Genetics and Genomics
ARUP Laboratories
Objectives

- Describe assay design considerations for complete coverage of regions to be interrogated
- Discuss validation approaches to establish performance characteristics and ensure test accuracy and robustness
- List challenges in and solutions for complex data analysis and interpretation
- Discuss workflow measures for implementing efficient Sanger sequencing assays into the clinical laboratory
DNA sequencing with chain-terminating inhibitors

(F. Sanger, S. Nicklen, and A. R. Coulson)

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

1977
1986 - ABI Sequencing
(Sanger with Fluorescent Terminator)

AmpliTaq DNA Polymerase, dNTPs, & DyeDeoxy Terminators

1. **Primer**
 - DNA Template

2. **Cycle Sequencing:**
 - Annealing of Primer
 - Single Primer
 - Extension
 - Incorporation of Dye Labeled Terminator

3. **Products**
 - Various size fragments with last nucleotide labeled
Clinical Sequencing Assays

• Analytical Validation
 • Familiarity
 • Design
 • Optimization
 • Accuracy
 • Robustness (reproducibility)
 • Interpretation

• Clinical validation
 • Clinical sensitivity
 • Clinical specificity
Familiarization and Planning

- Reference sequence

<table>
<thead>
<tr>
<th>Gene</th>
<th>GBK file (analysis)</th>
<th>GBK file (reporting)</th>
<th>Mutation database numbering differences</th>
<th>MLPA exon numbering differences</th>
<th>GVIE - ARUP Wiki</th>
<th>CDS</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTEN</td>
<td>NC_000010.10</td>
<td>NM_000314.4</td>
<td>None</td>
<td>NO</td>
<td>No</td>
<td>No</td>
<td>A.dominant</td>
</tr>
</tbody>
</table>

- Alternative transcripts
- Homology checks
 - pseudogenes
- Inheritance
- Databases
 - Locus specific
- Known benign variants
Regions Interrogated

- Targeted exons
 - Example: MEN2
- All coding exons
 - ‘Full gene or full sequence analysis’
- Intron/exon boundaries
 - +20--50
- Known deep intronic mutations
- Regulatory regions
 - 5’ UTR, promoter
 - 3’ UTR
Primer Design

- Often per exon
- Design around pseudogenes
- Avoid known variants
 - Interfere with PCR
- All at same PCR conditions?

PTEN Amplicon Sizes

<table>
<thead>
<tr>
<th>Amplicon</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>252</td>
</tr>
<tr>
<td>Exon 2</td>
<td>296</td>
</tr>
<tr>
<td>Exon 3</td>
<td>220</td>
</tr>
<tr>
<td>Exon 3 new</td>
<td>400</td>
</tr>
<tr>
<td>Exon 4</td>
<td>234</td>
</tr>
<tr>
<td>Exon 5 short</td>
<td>342</td>
</tr>
<tr>
<td>Exon 5 long</td>
<td>396</td>
</tr>
<tr>
<td>Exon 6</td>
<td>383</td>
</tr>
<tr>
<td>Exon 7</td>
<td>355</td>
</tr>
<tr>
<td>Exon 7 new</td>
<td>356</td>
</tr>
<tr>
<td>Exon 8 short</td>
<td>299</td>
</tr>
<tr>
<td>Exon 8 long</td>
<td>497</td>
</tr>
<tr>
<td>Exon 9</td>
<td>322</td>
</tr>
<tr>
<td>Promoter</td>
<td>697</td>
</tr>
</tbody>
</table>

PTEN PCR and Sequencing Primers:

<table>
<thead>
<tr>
<th>Exon</th>
<th>Forward Primer (5' → 3')</th>
<th>Reverse Primer (5' → 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>2</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>3</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>3 new</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>4</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>5 s</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>5 l</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>6</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>7</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>7 new</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>8 s</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>8 l</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>9</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
<tr>
<td>promoter</td>
<td>TGTAAGACAGCCGAGCTCTTTTTCATCGAG</td>
<td>CAGGAAACAGCTATGAGCCAATCAATTTTCACG</td>
</tr>
</tbody>
</table>
Sanger Sequencing Alignment Using Mutation Surveyor Software

Reference seq

Forward

Reverse

Reference seq
Difficult Regions

- High GC content
 - Optimization
- Secondary structure
 - Optimization or avoidance
- Benign Insertions/deletions
 - Example: CFTR GATT
- Pseudogenes
 - Example: PMS2
- Repeat motifs
 - Example: CFTR intron 8 TG/T
 - Example: Homopolymers
Primer Design

- Design Long and Short amplicons
- Cover all regions

CFTR intron 8
TG/T region
F and R primers for Long amplicon
Primer Design

CFTR intron 8
TG/T region
F and R primers for Short amplicon
Primer Design

- Loop-out/masking
Analytical Validation

- Performance characteristics
 - *Accuracy*

<table>
<thead>
<tr>
<th>PTEN Exon</th>
<th>Clinically Diagnosed Sample 1</th>
<th>Clinically Diagnosed Sample 2</th>
<th>Accuracy 1 (Cftr35)</th>
<th>Accuracy 2 (M3 DNA)</th>
<th>Accuracy 3 (CF16 11.21.08)</th>
<th>Accuracy 4 (CFTR41 12.3.08)</th>
<th>Accuracy 5 (11F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>2</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>3</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>4</td>
<td>wt</td>
<td>Splice site mutation c.253+1G=GC</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>5</td>
<td>c.1420C>CT</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>6</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>7</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>8</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>9</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>promoter</td>
<td>wt</td>
<td>c.1-1085C>CT</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>Intron</td>
<td>IVS1= c.80-96A>AG IVS8= c.1026+32T>TG</td>
<td>IVS1= c.80-96A>AG IVS4= c.233+1G=GC IVS8= c.1026+32T>TG</td>
<td>wt</td>
<td>wt</td>
<td>IVS1= c.80-96A>AG IVS8= c.1026+32T>TG</td>
<td>wt</td>
<td>wt</td>
</tr>
</tbody>
</table>
Quality checks

- Trace scores: average quality score
- Signal intensity
- Signal to noise ratio
- \(%QV_{20+} \): percentage of bases with quality values \(\geq 20 \)

Sequencing Results for PTEN

<table>
<thead>
<tr>
<th>EXON 1</th>
<th>TS</th>
<th>QV20+</th>
<th>AL (bp)</th>
<th>%QV20</th>
<th>S/N (A)</th>
<th>S/N (C)</th>
<th>S/N (G)</th>
<th>S/N (T)</th>
<th>SI (A)</th>
<th>SI (C)</th>
<th>SI (G)</th>
<th>SI (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample1_Acc_ex1F</td>
<td>43</td>
<td>227</td>
<td>270</td>
<td>84.074</td>
<td>625</td>
<td>308</td>
<td>423</td>
<td>275</td>
<td>4031</td>
<td>1997</td>
<td>2396</td>
<td>2284</td>
</tr>
<tr>
<td>sample1_Acc_ex1R</td>
<td>46</td>
<td>236</td>
<td>270</td>
<td>86.148</td>
<td>1643</td>
<td>801</td>
<td>1514</td>
<td>878</td>
<td>10706</td>
<td>5418</td>
<td>8925</td>
<td>7372</td>
</tr>
<tr>
<td>sample1_Within_ex1F</td>
<td>39</td>
<td>215</td>
<td>270</td>
<td>79.63</td>
<td>817</td>
<td>338</td>
<td>537</td>
<td>328</td>
<td>5523</td>
<td>2268</td>
<td>3047</td>
<td>2761</td>
</tr>
<tr>
<td>sample1_Within_ex1R</td>
<td>46</td>
<td>234</td>
<td>270</td>
<td>86.667</td>
<td>1641</td>
<td>822</td>
<td>1789</td>
<td>936</td>
<td>11283</td>
<td>5418</td>
<td>10631</td>
<td>7470</td>
</tr>
<tr>
<td>sample1_Betw_ex1F</td>
<td>39</td>
<td>221</td>
<td>270</td>
<td>81.852</td>
<td>347</td>
<td>159</td>
<td>233</td>
<td>175</td>
<td>3349</td>
<td>1330</td>
<td>1697</td>
<td>1674</td>
</tr>
<tr>
<td>sample1_Betw_ex1R</td>
<td>46</td>
<td>236</td>
<td>270</td>
<td>87.407</td>
<td>1304</td>
<td>612</td>
<td>1173</td>
<td>684</td>
<td>9187</td>
<td>4062</td>
<td>7181</td>
<td>5642</td>
</tr>
</tbody>
</table>

Average | 43.2 | 228.5 | 270 | 84.63 | 1062.8 | 506.667 | 944.83 | 545 | 7345.5 | 3415.5 | 5646.2 | 4534 |

Standard Deviation | 3.43 | 9.1378 | 0 | 3.3844 | 546.55 | 277.831 | 637.8 | 328.63 | 3477.6 | 1795.3 | 3764.8 | 2619 |
Reproducibility - PCR product

*Intra-run variability

Re-design of exon 3
Reproducibility - PCR products

*Inter-run

All reactions
Workflow

Sample receipt → Extraction → PCR set up

Amplification

PCR clean-up → Sequencing set up → Sequencing

Sequencing clean-up → Detection → Analysis
Workflow

- M13 tagged primers
- **Workflow**
 - Low throughput – per sample
 - High throughput – per exon
- Primer plate

PCR Tray Map

<table>
<thead>
<tr>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
<th>Sample #11</th>
<th>Sample #12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>16</td>
</tr>
<tr>
<td>G</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
</tr>
</tbody>
</table>

Thermocycler method: pcr men
Sequencing Throughput

- High throughput
 - 96 samples, one exon (amplicon)/plate

- Medium throughput
 - 1 plate – 1-8 samples, 3-48 reactions/sample

- Low throughput
 - Manual is faster
Clinical Parameters

- Clinical sensitivity
 - Percent affected individuals in which mutations can be found in the gene
 - Mutation detection rate
- Clinical specificity
 - Percent of unaffected individuals in which mutations are found in a gene
 - Penetrance
- Reference or reportable range
 - Description of gene regions interrogated
 - Mutations tested
 - Zygosity
Implementation

- Validation summary
 - With refseq, known SNPs, known double mutations, database information
- Standard operating procedure
- Training
- Costs
- Test information
- Reporting
- Internal databases
- Proficiency testing
Reporting

• Result
 • Standard vs Traditional nomenclature
 • Example: Beta globin amino acids are commonly known from the mature protein (-1 amino acid)
 • Nucleic Acid
 • Example: c.2183delAA
 • Amino Acid
 • Example p.G542X
• Reference sequence (version) and numbering scheme
• Interpretation
• Recommendations
ACMG Recommendations

- Report clinical significance

- "... the laboratory must provide the interpretive information and a best estimate of clinical significance for the variants...."

Mutation Categories

- Previously reported
 - Pathogenic
 - Benign
 - But check original reports
- Previously unreported
 - Expected pathogenic
 - Suspected pathogenic
 - Uncertain
 - Suspected benign
- Further classification
 - Severe, moderate, mild, very mild
Interpretation

- Exonic
 - Frameshift (presumed pathogenic)
 - Nonsense (presumed pathogenic, except 3’ end?)
 - In-frame deletion/duplication (may or may not be pathogenic)
 - Missense (may or may not be pathogenic)
Missense Mutation

- Evidences:
 - Reported before?
 - Seen in affected or control individuals?
 - Conserved amino acid?
 - Over gene families or species?
 - Active site in the protein?
 - Affect mRNA levels?
 - Occur in the general population?
 - Co-occurrence with causative mutations
 - Track with disease in the family?
 - Functional studies available?
 - IHC, structural analysis, RNA, biochemical studies
Amino Acid Prediction

- Existing predictions programs
 - PolyPhen 2, SIFT, Pmut, PhD-SNP, nsSNPAnalyzer, AlignGVGD

- Predictions using machine learning classification tools.
 - Gene-specific algorithms outperform generalized tools
 - Developed a standardized metric for evaluation of uncertain gene variants.
 - Visualization models for clinical implementation

- Emerging “authoritative” (clinically curated) gene variant/disease archives
ACADM UNCERTAIN VARIANTS

ACADM - A170S

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Call</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT</td>
<td>tolerated</td>
<td>21</td>
</tr>
<tr>
<td>PolyPhen</td>
<td>benign</td>
<td>27</td>
</tr>
<tr>
<td>PMut</td>
<td>neutral</td>
<td>7</td>
</tr>
<tr>
<td>MutPred</td>
<td>benign</td>
<td>45</td>
</tr>
<tr>
<td>PSAAP</td>
<td>benign</td>
<td>4</td>
</tr>
</tbody>
</table>

Consensus

![Consensus Diagram](image)

ACADM - A372D

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Call</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT</td>
<td>affects function</td>
<td>98</td>
</tr>
<tr>
<td>PolyPhen</td>
<td>probably damaging</td>
<td>99</td>
</tr>
<tr>
<td>PMut</td>
<td>pathological</td>
<td>82</td>
</tr>
<tr>
<td>MutPred</td>
<td>pathogenic</td>
<td>88</td>
</tr>
<tr>
<td>PSAAP</td>
<td>pathogenic</td>
<td>84</td>
</tr>
</tbody>
</table>

Consensus

![Consensus Diagram](image)

PREDICTED PATHOGENIC

PREDICTED BENIGN
Intronic Mutation

- Intronic
 - has it been reported before?
 - approximately 20-50 bases
 - potential splice site
 - http://www.fruitfly.org/seq_tools/splice.html
 - consensus sequence GT AG
 - Donor GT (start of intron)
 - Acceptor GA (end of intron)
 - Branch site U (18-40 upstream of 3’ splice site)
Finding Rare Variants

- **CFTR Example**
 - Child with F508del/I1028T
 - Mother also with F508del/I1028T
 - In cis
 - Does not explain symptoms in child

- **Alpha globin Example**
 - Apparent homozygous for p.X143Glu (Hb Seal Rock)
 - Subsequent deletion analysis showed -3.7Kb deletion
 - Compound heterozygous
 - Mild Hb H disease
Genetic Evidence
Family Concordance Studies

- Autosomal dominant/ X-linked/de novo mutations
- Single (affected) individual from a family tested
 - Results: sequence variant of unknown significance
- Test additional family members
 - Affected/Unaffected
 - Greater statistical power with affected distant relatives
- Evaluate pedigree data for evidence of causality
- Test hypothesis: Variant confers specified risk against the hypothesis of complete neutrality
- Determine likelihood ratio for causation
MECP2 Missense Mutation

- In silico prediction
 - Polyphen2: unknown
 - SIFT: Tolerated
- Present in ‘normal’ mother
 - Variable phenotype due to X inactivation?
- Present in unaffected brother
Extended Pedigree from Clinical Case

Bayesian Factor = 461:1 in favor of causality

(R479Q)
Likelihood Ratios: In Favor of Causality

<table>
<thead>
<tr>
<th>Pedigree. Gene/Mutation</th>
<th>Bayesian Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ACVRL1 p.R479Q</td>
<td>461.58</td>
</tr>
<tr>
<td>2. ACVRL1 p.G402S</td>
<td>19.31</td>
</tr>
<tr>
<td>3. ACVRL1 p.C344R</td>
<td>139.15</td>
</tr>
<tr>
<td>4. ACVRL1 p.E407G</td>
<td>63.63</td>
</tr>
<tr>
<td>5. ENG p.W196R</td>
<td>121.35</td>
</tr>
<tr>
<td>6. ENG p.L300P</td>
<td>31.82</td>
</tr>
<tr>
<td>7. ENG p.R529H</td>
<td>7.98</td>
</tr>
</tbody>
</table>
Variant Annotation Summary

Current manual method:
- Check internal database for variant
- Locus-specific databases
- dbSNP, frequency (not all benign)
- Prediction algorithms (Polyphen-2, Sift, others)
- Literature search
- Google

GALT Database
Automated Pipeline

Input

MySQL database:
Internal database
dbSNP
Biobase
1,000 Genome

Pipeline

Prediction programs

Output

Annotated Variant

Graphical Display

Courtesy of P. Ridge
Revolutionary Approach

- Next-generation sequencing (NGS) 2005
 - Massive Parallel Sequencing in a flow cell (400 Mb to 30Gb)
 - Large scale sequencing/re-sequencing of the chromosome possible
 - Clonally amplified templates
 - Single molecule templates
Next Gen Sequencing

- Gene panels
 - Genes known to cause disease
 - Variant discovery
- Whole exome
 - Gene discovery
- Whole genome
 - Gene discovery
Data Analysis: Variant Filtering

Pinpoint which gene causes HHT4!

Kept affected SNVs (2 shared) ~36%
Remove unaffected SNVs ~25%
Remove 8 HapMap SNVs ~27%
Remove SNVs in dbSNP, pseudogenes, repeat regions ~7%
~5% remaining!

Focus on NS-SNVs in protein coding regions, UTR, splice sites

Lead candidate gene: ADCK2 c.997C>CT, p.Arg333Stp

Courtesy of Drs. P. Bayrak-Toydemir, W Donahue
ADCK2 c.997C>CT, p.Arg333Stop!
Sanger Sequencing Continued Role

- Complex regions difficult to align with NextGen software
- Confirm that variants are “real”
- Confirm that variants are “significant”
 - Family concordance studies
- Familial testing
Conclusions

- Sanger sequencing has allowed clinical testing for numerous diseases
- Proper design and validation of sequencing tests can prevent analytical errors
- Sequence complexity can be addressed by primer design
- Interpretation complexity still a challenge
- Mutation databases with evidences for classification are needed
- Sanger sequencing will remain important as companion to next generation sequencing
Thanks to:

University of Utah
ARUP Laboratories

- Rong Mao, MD
- Pinar Bayrak-Toydemir, MD PhD
- Genevieve Pont-Kingdon, PhD
- Perry Ridge, MS
- Karl Voelkerding, MD
- Whitney Donahue, PhD
- Friederike Gedge
- David Crockett, PhD