This speaker has disclosed relationships with the products or services that will be discussed. The purpose of this disclosure is not to prevent the presenter with a relationship from presenting, but rather to provide listeners with information on which they can make their own judgments. It remains for the audience to determine whether the speaker's interests or relationships may influence the presentation.

The relationship disclosed is he received a grant/research support from Brahms Diagnostics.
Procalcitonin Directed Antibiotic Therapy

Eric Gluck MD FCCM
Chicago, IL
February 4, 2008
Procalcitonin- Introduction

• What is Procalcitonin?
• What is the role of PCT in sepsis?
Procalcitonin - Structure

- Procalcitonin is a 116 amino-acid peptide - Precursor of the hormone Calcitonin
- Expression is induced by bacterial infection but not by viral or fungal infections.
- Plasma concentrations can vary from 0.02 – 1,000 ng/ml (normal to septic shock)
- Serum level is not dependent on kidney function
- Stable invivo and invitro – easy to measure in serum and plasma
Role of PCT in the Absence of Infection

Release of Calcitonin in the context of endocrine regulation:

- Synthesis in healthy persons in the C-Cells of the thyroid
- PCT is enzymatically converted to calcitonin and then stored in endocrine granules
- Released only under certain stress (e.g. magnesium, gastrin)
Role of PCT in Sepsis

Alternative (cytokine-like) pathway during sepsis: ‘Hormokine’

• Bacterial toxins (gran +/gram-) and cytokines stimulate production of PCT in all parenchymal tissues
• This process can be attenuated or blocked during viral infection by interferones.
• Non endocrine tissue ie Liver, Lung, Brain etc. do not have endocrine granules where calcitonin can be stored.
• PCT is immediately released into the bloodstream
A Hormone Becomes a Cytokine

Calcitonin in healthy persons

PCT in bacterially infection

Müller B. et al., JCEM 2001
Procalcitonin - Normal Range

95% percentile < 0.025ng/ml
Procalcitonin

- Rapid increase usually around 3-4 hours after stimulation
- Plasma concentrations between 0.02 ng/ml und 1000 ng/ml
- Short half-life time (~ 24 h) not dependent on renal function
- Easy to measure in serum and plasma
Rapid Rise of PCT Post-Bacterial Challenge

- **Highly specific induction** of PCT by bacterial infection

- **Fast increase** (after 3-4 hours),

- **High dynamic range** (Plasma concentrations between < 0.05 ng/ml und 1000 ng/ml)

- **Short half-life time** (~ 24 h) independent of renal function

- **Easy to measure** in serum and plasma, stable *in vivo* and *in vitro*
Evolutionary Basis

- Has bactericidal properties
- Present in all mammals tested
- Probably was an early host defense against infection
- Replaced by more robust defenses such as antibody system and enhanced leukocyte defenses
- Most important, perhaps, in defending the body against invasion of bacteria during feeding.
Evolutionary Basis

• Co-opted by thyroid gland to provide a stimulatory mechanism for the management of calcium during digestion.

• Since there was no biological cost for maintaining the system, non endocrine cells maintained the ability to produce PCT during bacterial stimulation.
Goals of PCT

• How can we use this cellular signal of infection in the management of both septic and non septic patients

• Goals
 – Provide antibiotic therapy to pts who need it as soon as possible
 – Avoid antibiotic prescription to those without infection
 – Do both with a strong likelihood of being correct, at least as good as other markers such as WBC, bands, fever, CRP
Antibiotic Use in Europe

Briel M, Swiss Med Wkly 2006; 136: 241-7
Filippini M, Health Policy, 2006
Figure 1. Number of cases of sepsis in the United States, according to causative organism from 1979 - 2000
Lower Respiratory Tract Infections: A Frequent Clinical Condition Causing High Treatment Costs

- Acute exacerbations of COPD (US).
 - Prevalence: 16 million adults,
 - Hospitalisations: 500,000 p.a.
 - Mortality: 110,000 deaths p.a.

- Acute Bronchitis:
 - 5% of population per year,
 - 90% consulting doctor

- Value of AB controversial: 75% non-bact. Origin, DD colonization

- Common prescription rate: 94-100% ABX

References:
NEJM 2003; 348: 2618-25
With antibiotic use ‘out of control’ are there interventions that can be employed to reduce the use of antibiotics without imposing a risk on our patients?
• Intervention in the ED
Algorithm for ED Intervention Study

ProResp" - Study Design

LRTI
(CAP, AECB, Bronchitis, Asthma)

Standard week
(without PCT-result)

Randomization

PCT week

Treatment is up to the discretion of the treating physician

Follow-up after 10-14 days

PCT (ng/ml)

<0.1 → NO!

0.1-0.25 → No

0.25-0.5 → Yes

>0.5 → YES!

Clinical and PCT control after 6-12h

Christ-Crain et al., Lancet 2004
Antibiotic Therapy in LRTI

PCT identifies clinically relevant bacterial infection
Reduction of antibiotic use and costs by ~50%

Christ-Crain et al., Lancet 2004
Outcome was the Same in Both Groups

Christ-Crains et al., Lancet 2004
Antibiotic Therapy in LRTI

PCT identifies clinically relevant bacterial infection
Reduction of antibiotic use and costs by ~50%

Christ-Crain et al., Lancet 2004
Antibiotic Treatment of Exacerbations of COPD*

A Randomized, Controlled Trial Comparing Procalcitonin-Guidance With Standard Therapy

Daiana Stolz, MD; Mirjam Christ-Crain, MD; Roland Bingisser, MD; Jörg Leuppi, MD; David Miederer, MD; Christian Müller, MD;

Excluded (n=62)
1. Influenza
2. Immunosuppression
3. Refusal to participate
4. Psychiatric morbidity
5. No COPD
6. Asthma
7. Other comorbidities
8. CHF
9. Bronchiectasis
10. URTI
11. Chest pain
12. Pulmonary embolism

288 assessed for eligibility

226 randomized

113 procalcitonin group

102 procalcitonin guidance

102 analyzed for primary and secondary outcomes

99 followed at 14 days
deuath (n=3)
97 followed at 6 months
deuath (n=2)

113 standard group

106 standard therapy

106 analyzed for primary and secondary outcomes

104 followed at 14 days
deuath (n=2)
97 followed at 6 months
deuath (n=7)
PCT Guided Therapy in AECOPD

- **Procalcitonin-Group**: 40% Antibiotics, 60% no Antibiotics
- **Standard-Group**: 72% Antibiotics, 28% no Antibiotics

Relative risk for antibiotic exposure in PCT group: 0.58

Stolz D et al, CHEST, in press
Clinical Outcome at Short-term Follow-up

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Procalcitonin Group (n=102)</th>
<th>Standard Group (n=106)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical success (%)</td>
<td>84 (82.4)</td>
<td>89 (83.9)</td>
<td>0.853</td>
</tr>
<tr>
<td>Length of hospital stay days</td>
<td>9 (1-15)</td>
<td>10 (1-15)</td>
<td>0.960</td>
</tr>
<tr>
<td>Duration of ICU stay in days</td>
<td>3.3 ± 2.7</td>
<td>3.7 ± 2.1</td>
<td>0.351</td>
</tr>
<tr>
<td>Median steroid dose in mg</td>
<td>250 (119-400)</td>
<td>280 (183-421)</td>
<td>0.303</td>
</tr>
<tr>
<td>Hospitalization rate for AECOPD within 6 mo</td>
<td>18 (17.7)</td>
<td>22 (20.8)</td>
<td>0.507</td>
</tr>
</tbody>
</table>

Stolz D et al, CHEST, in press
Laboratory and Lung-function Outcome at Long-Term Follow-up

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Procalcitonin Group (n=102)</th>
<th>Standard Group (n=106)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom score</td>
<td>47 ± 14</td>
<td>30 ± 16</td>
<td>24 ± 16</td>
</tr>
<tr>
<td>FEV₁ L</td>
<td>0.88 ± 0.41</td>
<td>1.04 ± 0.48</td>
<td>1.07 ± 0.55</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>43.8 ± 11.2</td>
<td>47.8 ± 14.7</td>
<td>48.0 ± 16.1</td>
</tr>
<tr>
<td>CRP (mg/L) Median (IQR)</td>
<td>16 (5-53)</td>
<td>5 (2-16)</td>
<td>2 (1-9)</td>
</tr>
</tbody>
</table>

Stolz D et al, CHEST, in press
Long-term Outcome –
Time to Next Exacerbation

Stolz D et al, CHEST, in press
Prognosis in Patients with High and Low PCT Values on Admission

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Procalcitonin < 0.25 ng/ml</th>
<th>Procalcitonin ≥ 0.25 ng/ml</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital stay <24 hours %</td>
<td>27.2%</td>
<td>3.2%</td>
<td>0.004</td>
</tr>
<tr>
<td>Length of hospital stay in days</td>
<td>15 (9.5-20)</td>
<td>17.5 (9.5-24)</td>
<td>0.002</td>
</tr>
<tr>
<td>Need for ICU stay %</td>
<td>5.9%</td>
<td>25.8%</td>
<td>0.001</td>
</tr>
<tr>
<td>Death during hospitalization %</td>
<td>2.2%</td>
<td>6.5%</td>
<td>0.211</td>
</tr>
<tr>
<td>Death within 6 months %</td>
<td>6.6%</td>
<td>16.1%</td>
<td>0.058</td>
</tr>
</tbody>
</table>
Verification of Clinical Diagnosis by Integrating the PCT Measurement into Diagnostic Assessment

History: Cough, Dyspnea
• T: 37.6°C
• CRP: 119 mg/L
• PCT: 0.14 ng/ml
• Dx

History: Cough, productive Sputum
• T: 38.3°C
• CRP: 250 mg/L
• PCT: 4.2 ng/ml
• Dx:

Müller B., personal communication
Duration of ABX treatment is empiric (~ 14 days) – no data for optimal duration

Shorter duration (7 days has been shown to give same result)

PCT could be used to improve accuracy of dx and determine length of treatment
 - Reduce days of treatment -> reduce costs for AB
 - Reduce the risk for increasing antibiotic resistance
ProCAP – Study: Dx and guidance of Ab Rx in patients with bacterially induced CAP

Study Design

C A P
(as defined according to international guidelines)

Standard group

Randomization

ProCT group

AB treatment
(according to evidence-based guidelines for 10-14 days)

Follow-up
days 4
6
8

AB duration
according to guidelines

ProCT (ng/ml)

< 0.1
0.1-0.25
> 0.25
> 0.5

AB Therapy
NO!
No, follow up in clinical uncertainty
Yes
YES!

STOP or continue
Based on same cutoffs as above

Christ-Crain et al., ISICEM Brussels 2005
Procalcitonin guidance safely shortens antibiotic treatment in community acquired pneumonia
The “ProCAP”- Study

M. Christ-Crain, D. Stolz, R. Bingisser, C. Müller, J. Leuppi, M. Battegay, P. Huber, M. Tamm and B. Müller
Department of Internal Medicine, University Hospitals, CH-4031 Basel, Switzerland
christm@uhbs.ch

Preliminary results (200 patients): Reduction of treatment days by ~50%

*Christ-Crain et al., ISICEM Brussels 2005
Preliminary Result of ProCAP Study:

Monitoring of Abx therapy with PCT can be used to
- Decide on the **individual duration of treatment**
 according to the clinical situation of each patient

- Safely reduce the number of treatment days significantly (~50%)
 - Reduce costs
 - Reduce development of AB resistancy
Can this PCT guidance of ABX Therapy also be used for VAP patients?

Ventilator-associated pneumonia (VAP)
- frequent complication of mechanical ventilation
- associated with prolonged hospital stay
- High ICU mortality

Early identification of patients at high risk for death or VAP recurrence may provide an opportunity to change the treatment strategy to improve outcome.
PCT Significantly Improves the Accuracy of Clinical Diagnosis

In contrast: IL-6, IL-8 or CRP did not have any impact on the accuracy of clinical diagnosis

Harbarth S. Am J Respir Crit Care Med 2001
Kinetics of serum procalcitonin in patients who died (●), had pulmonary and/or extrapulmonary infection recurrence (●) or had favorable outcome (●) from day 1 to day 7.

*p < 0.05

**p < 0.001

PCT values > 0.5 ng/ml on day 7 predict treatment failure

(AUC 0.9; sensitivity 90%, specificity 88%; odds ratio 64.2)

Luyt et al., AJRCCM 2004
1229 patients included in LRTI studies

ProResp: Patients with LRTI in the ED
(Lancet 2004, N=243)

ProCAP: Hospitalized patients with CAP
(AJRCCM, 2006, N=302)

ProCold: Patients with AECOPD in the ED
(Chest, 2007, N=226)

PARTI: Patients with ARTI in primary care,
(submitted, N= 458)
PCT Release in the Absence of Infection

- **Newborn < 48hr** - increased PCT-values (physiological peak)

- **Primary inflammation syndrome following trauma**: multiple trauma, extensive burns, post major surgery (cardiac, transplant, abdominal)

- **Treatment that acts upon the proinflammatory CK cascade** (OKT3, injection therapy TNFα, IL-2, anti-lymphocyte globulins)

- **Certain cancers** (medullary CT-cell cancers of the thyroid, pulmonary small-cell carcinoma and bronchial carcinoma)

- **During prolonged circulatory failure** (prolonged cardiogenic shock, haemorrhagic shock, thermal shock)
Use of Procalcitonin as a Biomarker for Diagnosis of Sepsis in Patients in the ICU

Aditi Patel D.O
Eric Gluck MD FCCP
Susan Dawson MT(AS)
Tony Ocasio CLS(CMS)
Procalcitonin

- TNF-alpha and Interleukins IL-1β, IL-6 and IL-8.
 - Peaks within 3 hours
 - Even if there is on-going infection it is undetectable within the blood in 24 hours

- CRP
 - Very non-specific for sepsis and is elevated in and ICU patient for many other inflammatory conditions.

- Procalcitonin:
 - Increases within 12 hours of initial systemic infection
 - Half life of 24-30 hours
Reason for Study

- The present study is to determine whether in a general cohort of ICU patients Procalcitonin levels have sufficient sensitivity and specificity to predict sepsis in pts.
Current Accepted Definitions of Sepsis

• The SIRS criteria that was used was two or more of the following:
 – Temperature >38°C or <35°C
 – Heart rate >90 beats/min
 – Respiratory rate >20 breaths/min or PaCO2 <32 mmHg
 – WBC >12,000 cells/mm³
 • <4000 cells/mm³
 • or >10 percent immature (band) forms

• Sepsis includes pts that have clinical signs of SIRS and a definite site or highly probable site of infection through blood cultures, sputum cultures, urine culture, or any other culture.

• Septic Shock is severe sepsis associated with hypotension that is not responsive to 3L of isotonic solution plus end organ dysfunction
Methods

• Over a 5-month period, patients staying in the ICU for more than 24 hours were consecutively enrolled in the study irrespective of initial diagnosis.
 – post op patients were excluded

• Daily blood samples were obtained for the measurement of PCT. The SIRS criteria was assessed and recorded daily.

• In phase I of the trial a total of 49 pts were studied, 23 had a single level obtained on the day of admission and the rest had daily levels obtained. In phase II of the trial, not reported in our abstract, an additional 154 pts were studied with daily PCT levels.

• PCT levels were run using the proprietary assay Brahms.

• At the end of the study period each pt was evaluated for the presence of sepsis or sirs, using the previously defined criteria, by an investigator who was blinded to the values of PCT for the pt.
Results For Phase I and II

- PCT plasma levels below 0.5 ng/mL have been shown to be physiologic, and in this situation infection is unlikely.

- While PCT levels above 2 ng/mL are associated with increased likelihood of sepsis.

- Total Number of Patients: n=179

<table>
<thead>
<tr>
<th>PCT Level</th>
<th>Sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>70</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCT Level</th>
<th>Sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>98</td>
</tr>
</tbody>
</table>
Analysis for all Patients

Standard formulas were used to calculate sensitivity, specificity, positive predictive values, negative predictive value, and positive and negative likelihood ratio’s.

- Sensitivity: 99%
- Specificity: 91%
- Positive Predictive Value: 0.88
- Negative Predictive Value: 0.99
- Positive Likelihood Ratio: 11
- Negative Likelihood Ratio: 0.01
Analysis

- Patients were further analyzed based upon which criteria they met:
 - No SIRS, SIRS, Sepsis, or Septic Shock. (Figure 2 and 3)

Figure 2. Comparison of procalcitonin levels in patient with No SIRS, SIRS and Sepsis

Figure 3. Comparison of procalcitonin levels in Sepsis vs. Septic Shock.
Results

- Of the total number, 9 patients in phase I and 15 patients in phase II were found to have intermediate levels between 0.5ng/mL to 2ng/mL and were not statistically evaluated. This represents 12% of the pts enrolled in the study.

- These patients either had chronic infections such as positive chronic urine or wound cultures, major trauma or major burn but no signs of systemic infection.
Discussion

• PCT appears to be a sensitive and specific biomarker for the presence and absence of sepsis in a mixed cohort of pts admitted to the ICU.

• As evidenced by the NPV patients with PCT levels of <0.5ng/mL could be excluded from having sepsis with a high degree of certainty.

• Intermediate levels between 0.5ng/mL to 2ng/mL appear to require more clinical interpretation.
Figure 4. Flow chart of approach to drawing PCT levels in ICU patients.
Discussion

• Negative PCT levels virtually exclude the presence of bacterial or fungal infection.

• Positive PCT levels suggest strongly the presence of infection with an acceptable false positive rate.

• Intermediate levels require clinical correlation but are only present in a small percentage of ICU admissions.
Summary of available data on PCT and Rx of LRTI

<table>
<thead>
<tr>
<th>Use of PCT</th>
<th>Proven by clinical study?</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRTI</td>
<td></td>
</tr>
<tr>
<td>• Diagnosis of clinically relevant bacterial infections of the lower respiratory tract which require AB treatment</td>
<td>Efficacy</td>
</tr>
<tr>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>• Guidance of duration of AB therapy</td>
<td>Efficacy</td>
</tr>
<tr>
<td>VAP</td>
<td></td>
</tr>
<tr>
<td>• ???</td>
<td></td>
</tr>
</tbody>
</table>
The End

Questions?