Deconvoluting the Most Clinically Relevant Region of the Human Genome

Dimitri Monos Ph.D.

Immunogenetics Laboratory
The Children’s Hospital of Philadelphia
Department of Pathology and Lab Medicine
Perelman School of Medicine, University of Pennsylvania

ARUP LABORATORIES, Pathology Grand Rounds, September 20, 2018
GWAS Interpretation - Tag SNPs are Markers of LD blocks

*Concept of LD is population specific

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046295
Published Genome-Wide Associations through 12/2012
Published GWA at $p \leq 5 \times 10^{-8}$ for 17 trait categories

NHGRI GWA Catalog
www.genome.gov/GWASTudies
www.ebi.ac.uk/fgpt/gwas/
A SNP may appear twice if it has been associated with more than one disease.

Clark et al. The Dichotomy Between Disease Phenotype Databases and the Implications for Understanding Complex Diseases Involving the Major Histocompatibility Complex. Intern. J. of Immunogenetics 42:413-422, 2015
Genome-wide Density of SNPs Associated with Diseases

- The MHC (chr6:29-33Mb = 4Mb) includes ~260 genes, about half of which are involved in the immune response
- 884 unique loci associated with 479 unique traits/diseases; 112 unique disease phenotypes
- The MHC is recognized as the most important region of the human genome in relation to disease susceptibility

Density of diseases associated with specific SNPs in MHC region (20Kbp bins)
Data from NGHRI-EBI GWAS Catalog

Disease counts associated with SNPs at specified positions

Position on chromosome; HLA gene locations indicated
Approaches

1. Sequencing characterization of the MHC: Complete and accurate sequencing of the 4Mb of heterozygote samples using long sequencing reads (3-10kb) and de novo (not reference-based) assembly. Eventual objective is the generation of MHC haplotypes if possible for the whole MHC or any other sizeable segment of interest.

2. Identify MHC genomic elements, like miRNAs, long non-coding RNAs, pseudogenes, methylation sites and possibly new elements with functional roles.

3. Use alternative approaches combining NGS/Genetics and Complexity Theory/Physics that provide totally new insights in the relationships of genomic sequences and their possible interdependences by computational means.
The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity

Johannes Dapprich¹, Deborah Ferriola¹,², Kate Mackiewicz², Peter M. Clark², Eric Rappaport³, Monica D’Arcy⁴, Ariella Sasson⁴, Xiaowu Gai⁴, Jonathan Schug⁵, Klaus H. Kaestner⁵ and Dimitri Monos²,⁶*
Region Specific DNA Extraction (RSE)

- 36 different genomic sequences of a single DNA sample, have been targeted captured and sequenced, totaling 25Mb

- Using a software program we have developed (Antholigo) 500 oligos were designed for the capture of the 4Mb of the MHC, i.e one oligo every 8Kb.
PacBio Sequencing for *de novo* Assembly of the MHC
• **PGF Alignment:** Mean depth of coverage: 176X, 93.8% of positions >20x

• **PGF Assembly using only PGF reads**
 • 21 contigs >10 Kb. 96% coverage of targeted region with 99.95% accuracy
 • Longest contig 1.2 Mb

• **PGF Assembly using mixed reads**
 • 20 contigs >10 kb. 96% coverage of targeted region with 99.69% accuracy.
 • Longest contig 1.0 Mb
COX Assembly

COX Coverage Depth

COX Only Assembly

COX Mix Assembly

COX Gene Map

• COX Alignment: Mean depth of coverage 253X, 99.6% of positions >20X

• COX Assembly using only COX reads
 • 11 contigs >10 Kb. 99% coverage of targeted region with 99.97% accuracy.
 • Lonest Contig 1.1 Mb

• COX assembly using mixed (PGF+COX) reads
 • 13 contigs >10 Kb. 99% coverage of targeted region with 99.95% accuracy.
 • Longest Contig 900 Kb
Heterozygous Sample Assembly

- Haplotype 1
 - 13 contigs >10 Kb
 - Longest contig 1.8 Mb
- Haplotype 2
 - 18 contigs >10 Kb
 - Longest contig 1.7 Mb
- Accuracy
 - The HLA haplotypes derived from family tree analysis was the same as the HLA haplotypes after sequencing and de novo assembly for 10 genes. The total number of bases in the 19 HLA alleles of the two haplotypes were 105,098 with an accuracy 99.95%.
 - 96.6% (4816/4988) of expected OmniExpress-24 SNPs found in contigs, with 99.2% (4777/4816) accuracy.
GWAS data reveal that ~90% of causal variants in autoimmune diseases are non-coding.

The above statement is concordant with the major findings of the ENCODE project, whereby the majority of the genome encodes for meaningful elements of primarily regulatory nature.

Therefore the “Junk DNA” theory is definitely a theory of the past ...
Annotated miRNA – miRBase (Rel. 21)

Bioenergetically stable Pre-miRNA hairpin structure formation

Cleavage by the RNAase III enzyme DICER

Mature miRNA

hsa-miR-6891-5p
UAAGGAGGGGGAUGAGGGG

hsa-miR-6891-3p
CCCUCAUCUUCCCCUCCUUUC

Translational Suppression of mRNA Targets
A) Allele Count

<table>
<thead>
<tr>
<th>Allele Count</th>
<th>HLA-B Intron 4 Sequence Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>GTAAGGAGGGGGGGATAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTC........ AGCAGGTCAGGGCCCTCATCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>88</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCCTGTAGGCCCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>72</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>65</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>40</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>7</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>1</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>1</td>
<td>GTAAGGAGGGGGGTAGGGGTCAATCTCTTCTCAGGGAACAGGAGCCCTTCTTGAGGCCCTTCAGCAGGTCAGGGCCCTCTGCTTCCCTCTCTTCTCCAG</td>
</tr>
</tbody>
</table>

Total: 384

B) HSA-miR-6891-5p

- **miRNA Seed Region**

C) HSA-miR-6891-3p

- **miRNA Seed Region**
Studying the Role of miR-6891-5p
Experimental design

1. Establish appropriate cell model
 • Evaluate expression of miR-6891-5p

2. Assess the role of miR-6891-5p within a cell model
 That is: Identify putative miRNA targets through RNA expression microarray analysis (miR-6891-5p inhibition vs. control)

 For inhibition of miR-6891-5p, a construct with antisense of miR-6891-5p and a scrambled sequence as a control needed to be expressed in COX cells

 Therefore, antisense and scrambled sequence expressing plasmids were packaged separately into lentiviruses for better delivery in COX cells
Identification of miR-6891-5p targets

All samples were hybridized onto the Affymetrix HuGene 2.0 ST array for analysis. 1.35 million probes/ ~33,500 interrogated coding transcripts/ ~11,000 interrogated long intergenic non-coding transcripts

miR-6891-5p Inhibited Samples Inhibition of miR-6891-5p within the COX B-lymphocyte cell line using a lentivirus construct engineered to express the antisense transcript of miR-6891-5p

Control Samples Scrambled antisense miR-6891-5p lentivirus expression vector was used as control
HSA miR-6891-5p differentially regulates targets in B-cell line knockdown vs. control samples (RNA microarray analysis)

104 up-regulated transcripts were identified. Only top 10 are shown. Identified genes are putative targets of HSA-miR-6891-5p.

<table>
<thead>
<tr>
<th>Ensemble Gene ID</th>
<th>Gene Symbol</th>
<th>Fold Change</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSG000000226777</td>
<td>KIAA0125</td>
<td>22.7</td>
<td>1.2E-02</td>
</tr>
<tr>
<td>ENSG00000211890</td>
<td>IGHA2</td>
<td>8.5</td>
<td>2.0E-02</td>
</tr>
<tr>
<td>ENSG00000186522</td>
<td>SEPT10</td>
<td>7.8</td>
<td>3.8E-03</td>
</tr>
<tr>
<td>ENSG00000229807</td>
<td>XIST</td>
<td>7.5</td>
<td>2.0E-03</td>
</tr>
<tr>
<td>ENSG00000133124</td>
<td>IRS4</td>
<td>6.4</td>
<td>4.5E-03</td>
</tr>
<tr>
<td>ENSG00000237438</td>
<td>CECR7</td>
<td>6.3</td>
<td>2.4E-02</td>
</tr>
<tr>
<td>ENSG00000258667</td>
<td>HIF1A-AS2</td>
<td>6.0</td>
<td>7.5E-04</td>
</tr>
<tr>
<td>ENSG00000079691</td>
<td>LRRC16A</td>
<td>5.9</td>
<td>9.8E-04</td>
</tr>
<tr>
<td>ENSG00000184258</td>
<td>CDR1</td>
<td>5.6</td>
<td>3.2E-02</td>
</tr>
<tr>
<td>ENSG00000073282</td>
<td>TP63</td>
<td>5.4</td>
<td>2.6E-03</td>
</tr>
</tbody>
</table>

99 down-regulated differentially expressed transcripts were identified. Not shown. Identified genes are indirect targets of HSA-miR-6891-5p.
Putative mRNA Targets of miR-6891-5p – Disease Association

<table>
<thead>
<tr>
<th>DISEASE (17/52)</th>
<th>Targeted Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crohn’s disease, ulcerative colitis</td>
<td>IRAK3, FCRL3</td>
</tr>
<tr>
<td>rheumatoid arthritis</td>
<td>CXCR3, FCRL3</td>
</tr>
<tr>
<td>asthma</td>
<td>IRAK3, CXCR3</td>
</tr>
<tr>
<td>thyroid disease, autoimmune</td>
<td>FCRL3</td>
</tr>
<tr>
<td>multiple sclerosis</td>
<td>FCRL3</td>
</tr>
<tr>
<td>hepatitis, autoimmune</td>
<td>FCRL3</td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>FCRL3</td>
</tr>
<tr>
<td>diabetes, type 2</td>
<td>IRS4, SORBS1, IRS4</td>
</tr>
<tr>
<td>diabetes, type 1</td>
<td>FCRL3</td>
</tr>
<tr>
<td>bladder cancer</td>
<td>RGS6</td>
</tr>
<tr>
<td>Graves’ disease</td>
<td>FCRL3</td>
</tr>
<tr>
<td>systemic lupus erythematosus</td>
<td>CXCR3, GMAP5</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>FOS</td>
</tr>
<tr>
<td>lung cancer</td>
<td>RGS6</td>
</tr>
<tr>
<td>Sebaceous tumors, somatic</td>
<td>LEF1</td>
</tr>
<tr>
<td>Urinary bladder cancer</td>
<td>TP63</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia</td>
<td>GRAMD1B</td>
</tr>
</tbody>
</table>

Putative mRNA targets of miR-6891-5p identified by microarray analysis were found to be involved in 52 diseases (OMIM), including the subset of autoimmune and cancer related diseases listed above.
miRNA-6891-5p targets the 3’UTR of the heavy chain IgA mRNA

A) Luciferase

miR-6891-5p

Suppression of Luciferase expression

B) Luciferase

Overexpression of miR-6891-5p

Further suppression of Luciferase expression

C) Luciferase

Antisense of miR-6891-5p

No binding of microRNA, Luciferase is expressed

D) IGHA1 and IGHA2 3’UTR are highly conserved
Selective IgA deficiency

- Most common antibody deficiency (can be up to 0.6% and is population dependent)
- IgA deficiency is IgA level of 0.07 g/l after the age of four years in the absence of IgG and IgM deficiencies.
- Patients suffer from increased incidences of upper respiratory tract infections.
- Selective IgA deficiency is believed to be the result of defects in B-cell maturation

Nature Reviews Immunology 13, pp; 519–533
Exploring the role of miR-6891-5p in selective IgA deficiency

Citnis N. et al. Frontiers in Immunology, May 2017, V:8, article 583
Effect of miRNA-6891-5p suppression in *IGHA1* expression in human primary low-IgA expressing B-cells

Method:
- B-cells from families with low and normal IgA expressing siblings were purified.
- IgA low expressing patient cells were transduced with either the scrambled or the miR-6891-5p antisense construct expressing lentiviruses. Total RNA was purified from these cells and qPCR was performed to analyze *IGHA1* expression.

Conclusion: Suppression of miR-6891-5p can upregulate *IGHA1* expression in primary human IgA-low expressing B-cells
Significance of the MHC encoded miRNAs

- HLA/MHC encoded microRNAs can influence/regulate many cellular functions and therefore many diseases
- We have studied only one of the targets of miR-6891-5p while expression analysis data indicate that the particular miRNA controls about 200 transcripts and therefore a wide spectrum of processes
- If MHC encodes more miRNAs and each miRNA can target hundreds of transcripts, MHC noncoding regions certainly play a critical role in human biology
Identifying Novel miRNA of the MHC

Experimental Design

1. Perform deep sequencing of the miRNA transcriptome on two homozygous lymphoblastoid cell lines with completely characterized MHC haplotypes, PGF and COX

1. Genome wide deep sequencing of the miRNA transcriptome reveals the expression of over 800 known miRNA with an average depth of coverage > 20X
Expression Signature (HSA-miR-219a-1)

Pre-miRNA Hairpin Structure

Biological Replicate 1

Biological Replicate 2
Identification of Novel miRNAs from the MHC

PGF Cell Line
- Mapped Reads on the MHC
- Exp 1
 - 891 miRNA
 - 41 miRNA
 - 21 miRNA
 - 67 miRNA
- Exp 2
 - 1299 miRNA
 - 84 miRNA
 - 53 miRNA
 - miRDeep* Algorithm
 - Expression Filter/significantly expressed
 - Remove Annotated Loci
 - Sample Union
 - 89 Unique miRNA

COX Cell Line
- Mapped Reads on the MHC
- Exp 1
 - 1105 miRNA
 - 49 miRNA
 - 26 miRNA
 - 45 miRNA
- Exp 2
 - 1048 miRNA
 - 45 miRNA
 - 31 miRNA
 - Sample Union
 - 47 miRNA
 - 89 Unique miRNA

Haplotype Specific Expression

PGF
- 42 miRNA
- COX
- 25 miRNA
- 22 miRNA

Additional Supporting Evidence

87 Unique miRNA

- 6 miRNA
- 48 miRNA
- 33 miRNA

Dicer Dependent
AGO Loaded
Patterns of Novel miRNAs Encoded by the MHC are Haplotypic Specific
Each novel miRNA (89) that is in LD with a disease associated SNP as annotated by GWAS Catalog is reported along with the associated trait/disease (64), SNP ID and genomic context of each variant (as annotated by GWAS catalog).

<table>
<thead>
<tr>
<th>Associated Disease / Trait</th>
<th>Disease Associated SNP</th>
<th>Genomic Context</th>
<th>Novel miRNA ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-related hearing impairment</td>
<td>rs9040459</td>
<td>non coding transcript exon variant</td>
<td>CHOP_34</td>
</tr>
<tr>
<td>Age-related macular degeneration</td>
<td>rs12153855</td>
<td>intron variant</td>
<td>CHOP_11</td>
</tr>
<tr>
<td>Antinuclear antibody levels</td>
<td>rs2071277</td>
<td>intron variant</td>
<td>CHOP_64</td>
</tr>
<tr>
<td>Arthritis (juvenile idiopathic)</td>
<td>rs2395185</td>
<td>intron variant</td>
<td>CHOP_46</td>
</tr>
<tr>
<td>Asthma</td>
<td>rs3129943</td>
<td>intron variant</td>
<td>CHOP_66</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>rs12153855</td>
<td>intron variant</td>
<td>CHOP_52</td>
</tr>
<tr>
<td>Autism spectrum disorder</td>
<td>rs3132581</td>
<td>intron variant</td>
<td>CHOP_11</td>
</tr>
<tr>
<td>Bipolar disorder and schizophrenia</td>
<td>rs2524005</td>
<td>upstream gene variant</td>
<td>CHOP_34</td>
</tr>
<tr>
<td>Blood metabolite ratios</td>
<td>rs886424</td>
<td>non coding transcript exon variant</td>
<td>CHOP_19</td>
</tr>
<tr>
<td>Cholesterol, total</td>
<td>rs1046080</td>
<td>missense variant</td>
<td>CHOP_25</td>
</tr>
<tr>
<td>Complement C3 and C4 levels</td>
<td>rs3117928</td>
<td>3' UTR variant</td>
<td>CHOP_42</td>
</tr>
<tr>
<td>Crohns disease</td>
<td>rs11575839</td>
<td>synonymous variant</td>
<td>CHOP_47</td>
</tr>
<tr>
<td></td>
<td>rs2071278</td>
<td>intron variant</td>
<td>CHOP_9</td>
</tr>
<tr>
<td></td>
<td>rs1799964</td>
<td>upstream gene variant</td>
<td>CHOP_19</td>
</tr>
<tr>
<td></td>
<td>rs9258260</td>
<td>upstream gene variant</td>
<td>CHOP_42</td>
</tr>
<tr>
<td></td>
<td>rs9271366</td>
<td>intergenic variant</td>
<td>CHOP_47</td>
</tr>
</tbody>
</table>
Computational prediction pipeline and putative miRNA loci identified from the MHC haplotype sequences of PGF and COX lymphoblastoid cell lines

PGF MHC Sequence	COX MHC Sequence
516,608,278 | 508,300,528
29,036,641 | 29,819,144
8,936,930 | 9,345,605
9,019 | 9,297

1. Define Pre-miRNA Loci ($58 \leq \text{Length} \geq 110$)
2. *In silico* pre-miRNA Hairpin Folding
3. Minimum Free Energy Filter (-20Kcal/mol)
4. Linear Hairpin Filter
5. Machine Learning Filter (*miRBoost*)
6. Remove Entries Overlapping Annotated Genomic Features (GENCODE rel24)
7. Merge Overlapping Loci into Single Locus
<table>
<thead>
<tr>
<th></th>
<th>PGF-MHC</th>
<th>COX-MHC</th>
<th>Region 1 chr2:90248739-93848739</th>
<th>Region 2 chr14:21214050-24809251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length</td>
<td>3,666,036</td>
<td>3,591,053</td>
<td>3,600,000</td>
<td>3,595,201</td>
</tr>
<tr>
<td>Exonic Base Count</td>
<td>408,172</td>
<td>394,882</td>
<td>4,427</td>
<td>338,354</td>
</tr>
<tr>
<td>Intronic Base Count</td>
<td>1,233,387</td>
<td>1,251,155</td>
<td>26,964</td>
<td>1,343,178</td>
</tr>
<tr>
<td>Intergenic Base Count</td>
<td>2,024,477</td>
<td>1,945,016</td>
<td>3,568,609</td>
<td>1,913,669</td>
</tr>
<tr>
<td>Computationally predicted pre miRNAs</td>
<td>9,019</td>
<td>9,297</td>
<td>1,828</td>
<td>6,996</td>
</tr>
</tbody>
</table>

George Pavlos, Ph.D
Democritus University of Thrace, Department of Electrical and Computing Engineering Section of Telecommunications and Space Science
Research Team of Chaos & Complexity
Xanthi, Greece

Dimitri Monos, Ph.D
Immunogenetics Laboratory, The Children’s Hospital of Philadelphia
Department of Pathology and Lab Medicine
University of Pennsylvania, School of Medicine
Structures

The world is full of Complexity!

The weather
The oceans
The winds
A tree structure
Complex Systems

A system is complex when it is composed of many parts that interconnect in intricate ways. The degree and nature of the relationships is imperfectly known. Metric for intricateness (or complexity) is the amount of information contained in the system. The overall emergent behavior is difficult to predict, even when subsystem behavior is readily predictable. Small changes in inputs or parameters may produce large changes in behavior.
Examples demonstrating the relevance of Complexity Theory in diverse physical systems

Space plasmas, atmospheric dynamics and seismicity (earthquakes) as well as brain functions, cardiac activity and most recently studying DNA sequence dynamics.

A remarkable agreement of theoretical predictions by Complexity Theory and experimental estimations was found in all cases.
The Problem

To understand the hidden dynamics (patterns/ information) encrypted within DNA sequences by tools from Complexity Theory and Non-Linear Dynamics
From Sequences of Bases to Arithmetic Data

Interevent Data: 8, 13, 3,…

We constructed the arithmetic data from the DNA sequences by counting the number of intervening bases from a specific base (A) to the next one and so on (Interevent data)
The basic finding of this work was that the continuum of the MHC sequences are characterized by a dynamical process whereby long-range correlations are observed. Otherwise there is no discontinuity in the information included in different segments of the DNA.
PGF and COX complete MHC sequences were used. Region 1 was selected to have very few genes, with the overwhelming percentage of bases derived from intergenic space. Region 2 was selected to have the relative same ratio of base composition as well as gene density, making this region very similar to the ~4MB MHC. The individual sequences that comprise a specific genomic region (exonic, intronic and intergenic) for each assembly were concatenated into a single contiguous sequence, giving rise to four sequence files for each assembly. These four concatenated sequences were then randomly shuffled while preserving the underlying base composition, giving rise to four additional random sequences for each assembly.
The Hurst Exponent

The Hurst exponent is a statistical index used for describing long range correlations in the data series. Its values range between 0 and 1. A value of 0.5 indicates a true random process (e.g. a Brownian series). A Hurst exponent value, $0.5 < H < 1$ indicates "persistent behavior" or pattern.

![Comparison Regions (Exonic, Intronic, Intergenic)](image)

Exonic, intergenic and intronic sequences are characterized by long range correlations and “memory character” or “persistent behavior” or patterns of DNA sequences. Every next step is influenced/determined by previous steps. Shuffled data are clearly distinguishable from the physiological sequences.
Tsallis q triplet estimation – (q stationary)

Tsallis q-Gaussians describe far from equilibrium, metastable stationary states. When the dynamic of a system is attracted in a confined subset of the phase space, then long-range correlations can develop.

Within each of the exonic, intergenic and intronic sequences long range correlations are observed. $q=1$ means totally random.
Correlation Dimension

This tool is a measure of the dimensionality of the state space occupied by a set of random points and is directly connected with the efficient degrees of freedom needed to fully describe the system’s dynamics. This tool reveals the degree of self-organization of a particular system. Higher values lower degree of self-organization (noise).

![Comparison Regions Graph](image)

Parameters:
- Embedding Dimension (m=12)
- Delay Time (τ=2)
- Theiler Parameter (w=10)

The lower number of genes reveals a lower-dimensional fractal set in the DNA dynamical phase space. On the contrary, the higher number of genes reveals a higher-dimensional fractal set with a more stochastic behavior. In the other two regions intronic and intergenic, this ratio became inversely proportional. More specifically in the intergenic region, the higher number of genes of the exonic region reveals a lower-dimensional fractal set. Furthermore we saw an interaction among the number of genes in exonic region and the intergenic region regarding the profile of a fractal set in the phase space.

Finally the above result indicates the presence of nonlinear and low-dimensional DNA dynamics underlying the DNA structure and it evolves on a low-dimensional fractal set in the DNA dynamical phase space.

The lower the number, the higher the degree of self organization
Conclusions

1. Clear discrimination was observed between the two sets of data (real DNA sequences and shuffled sequences). This observation provides the first evidence that the approach is credible.

2. We observed significant dynamical behavior for the specific regions of the DNA sequences (EXONIC, INTRONIC, INTERGENIC) suggesting complexity behavior. This would imply that the system contains patterns and information. Considering that exonic regions are indeed regions with patterns and information, then the present statistical/computational tools reveal that intronic and intergenic regions are also DNA segments including patterns and information at a comparable level with exonic. It is the ENCODE project today that makes this finding a rather credible assertion.

3. The approach indicates that exonic, intergenic and intronic sequences are characterized by long range correlations (LD concept?). Not of specific loci but rather as an overarching concept.

4. An interactive relationship has been identified among exonic, intronic and intergenic sequences.

5. An important next step is to examine whether these internal degree of organization of intronic and intergenic sequences have an identifiable character.
Conclusions overall

• Using GWAS data we find that the MHC is the only region in the whole genome characterized by such a high density of SNPs associated with traits and diseases. The high throughput technologies can now enable the complete and accurate characterization of the MHC.

• This development will promote the study of other genomic elements within the MHC, like miRNAs, and their role in regulating gene expression. It is not unlikely that other genomic elements currently unknown may be discovered. The miRNAs control a large number of transcripts and the MHC, most likely harbors thousands of miRNAs.

• The merging of distinct disciplines like genetics and complexity theory from Physics can provide insights previously unattainable. This most likely is relevant not only to the MHC but to the rest of the genome as well.
 • MHC sequences, whether exonic, intronic or intergenic contain comparable levels of information.
 • These regions interact with each other.
 • The regions within the MHC are characterized by long range correlations (reminiscent of Linkage Disequilibrium?).
Acknowledgements

Immunogenetics Lab/CHOP-PENN
Deborah Ferriola
Katarzyna Mackiewicz
Hilary Melher
Jamie Duke
Peter Clark
Malek Kamoun-HUP
Brad Johnson-HUP

Generation Biotech
Johannes Dapprich

University Of Thrace-Greece, Dept. of Electrical Engineering and Computer Sciences
George Pavlos
Leonidas Karakatsanis
Aggelos Iliopoulos
Evgenios Pavlos
The Children’s Hospital of Philadelphia

Immunogenetics Laboratory

Deborah Ferriola
Allison Gasiewski
Jamie Duke
Hilary Mehler
Larissa Slavich

Timothy Mosbruger
Steven Heron
Michael Mignogno
Ryan Morlen
Rita Walker

Ed Frackelton
Yanping Huang
Jenna Wasserman
Ethan Kentzel
Carolina Kneib
Thank you