Human Chorionic Gonadotropin: Clinical Utility & Diagnostic Considerations

David G. Grenache, PhD, MT(ASCP), DABCC
April 13, 2009
Disclosures

David G. Grenache has no relevant financial interests regarding the material presented today.
Objectives

• Describe the structure, synthesis and function of hCG

• Discuss the clinical utility of hCG testing in the diagnosis and management of pregnancy, malignancy, and Down syndrome

• Discuss the causes of false-positive hCG results and persistently low hCG concentrations and explain investigations that can be used to identify each
Outline

• hCG structure and isoforms

• hCG assays and issues

• Clinical utility

• Persistent, low hCG
Human Chorionic Gonadotropin (hCG)

- Glycoprotein hormone family

- hCG: αβ
- LH: αβ
- FSH: αβ
- TSH: αβ
Human Chorionic Gonadotropin (hCG)

- Glycoprotein hormone family
hCG Structure

• Dimer is ~38,000 daltons
 – 30% of weight due to carbohydrate

• Alpha subunit
 – 92 amino acids
 – 2 N-linked carbohydrate chains
 – 5 disulfide bridges

• Beta subunit
 – 145 amino acids
 – 2 N-linked & 4 O-linked carbohydrate chains
 – 6 disulfide bridges

http://www.chem.gla.ac.uk/protein/glyco/hyper/hcg_act.html
Physiology of hCG

• Extends functional life of corpus luteum

• Maintains high progesterone concentrations in early pregnancy

• Thyrotropic at very high concentrations
hCG Heterogeneity

• Numerous molecular forms of hCG present in pregnancy serum
 – Dissociated or degraded molecules with no biological activity

• Key β-containing isoforms
 – Intact hCG
 – Nicked hCG
 – Free β subunit
 – Nicked free β subunit
 – β-core fragment (urine)

Cole, LA. Clin Chem 1997;43:2233-2243
Hyperglycosylated hCG (HhCG)

• O-linked carbohydrates on β chain larger than normal
 – 74% vs. 16% hexasaccharides

• Synthesized by invasive cytotrophoblasts
 – Implantation blastocysts
 – Choriocarcinoma

• Principal isoform produced in early gestation

Intact hCG

• Synthesized by syncytiotrophoblasts

• Serum concentrations increase progressively in early pregnancy
 – Peak at 7 – 9 weeks of gestation

• Decrease until ~24 weeks then plateau

hCG Assays

• All are FDA approved for assessment of pregnancy status only

• Approximately half of all hCG tests performed for this reason
 – 35% for maternal serum screening for Down’s syndrome
 – 15% for use as a tumor marker

• Quantitative tests should detect intact hCG and free beta subunit
Quantitative Assays

• Immunometric methods designed for use with serum

• Molecular heterogeneity influences assay performance
Assay Antibodies

Table 1. Commonly identified antibody binding sites (epitopes) on hCG, its free subunits, and degradation products.

<table>
<thead>
<tr>
<th>Epitope</th>
<th>Descriptions</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hCG dimer</td>
<td>Site at subunit interface on nonnicked hCG</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-common β1</td>
<td>Mutual site on hCG, free β, and β-core</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Anti-common β2</td>
<td>Separate mutual site on hCG and free β (β-core?)</td>
<td>✓ ✓ ✓ ✓ ±⁹</td>
</tr>
<tr>
<td>Anti-β C-terminal</td>
<td>Mutual site on hCG and free β only</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Anti-common α</td>
<td>Mutual site on hCG and free α</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Anti-free β</td>
<td>Free subunit-specific site, hidden on hCG</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Anti-nonnicked free β</td>
<td>Free subunit-specific site, close to nicking site</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free β + β-core</td>
<td>Mutual site on free β and β-core fragment</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Anti-β-core fragment</td>
<td>β-core fragment-specific site, hidden on free β</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free α</td>
<td>Free subunit-specific site, hidden on LCG</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Some anti-common β antibodies also recognize β-core fragment.

Cole, LA. *Clin Chem* 1997;43:2233-2243
Assay Antibodies

Table 1. Commonly identified antibody binding sites (epitopes) on hCG, its free subunits, and degradation products.

<table>
<thead>
<tr>
<th>Epitope</th>
<th>Descriptions</th>
<th>Nonnicked hCG</th>
<th>Nicked hCG</th>
<th>hCG-terminal</th>
<th>Nonnicked free β</th>
<th>Nicked free β</th>
<th>β-core fragment</th>
<th>Regular or large free α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hCG dimer</td>
<td>Site at subunit interface on nonnicked hCG</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-common β1</td>
<td>Mutual site on hCG, free β, and β-core</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Anti-common β2</td>
<td>Separate mutual site on hCG and free β (β-core?)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td>±</td>
</tr>
<tr>
<td>Anti-β C-terminal</td>
<td>Mutual site on hCG and free β only</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-common α</td>
<td>Mutual site on hCG and free α</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β</td>
<td>Free subunit-specific site, hidden on hCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-nonnicked free β</td>
<td>Free subunit-specific site, close to nicking site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β + β-core</td>
<td>Mutual site on free β and β-core fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-β-core fragment</td>
<td>β-core fragment-specific site, hidden on free β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free α</td>
<td>Free subunit-specific site, hidden on LCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

* Some anti-common β antibodies also recognize β-core fragment.

Cole, LA. Clin Chem 1997;43:2233-2243
<table>
<thead>
<tr>
<th>Epitope</th>
<th>Descriptions</th>
<th>Nonnicked hCG</th>
<th>Nicked hCG</th>
<th>hCG-terminal</th>
<th>Nonnicked free β</th>
<th>Nicked free β</th>
<th>β-core fragment</th>
<th>Regular or large free α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hCG dimer</td>
<td>Site at subunit interface on nonnicked hCG</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Anti-common β1</td>
<td>Mutual site on hCG, free β, and β-core</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-common β2</td>
<td>Separate mutual site on hCG and free β (β-core?)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>±²</td>
</tr>
<tr>
<td>Anti-β C-terminal</td>
<td>Mutual site on hCG and free β only</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-common α</td>
<td>Mutual site on hCG and free α</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β</td>
<td>Free subunit-specific site, hidden on hCG</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-nonnicked free β</td>
<td>Free subunit-specific site, close to nicking site</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β + β-core</td>
<td>Mutual site on free β and β-core fragment</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Anti-β-core fragment</td>
<td>β-core fragment-specific site, hidden on free β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Anti-free α</td>
<td>Free subunit-specific site, hidden on LCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

² Some anti-common β antibodies also recognize β-core fragment.

Cole, LA. Clin Chem 1997;43:2233-2243
Assay Antibodies

Table 1. Commonly identified antibody binding sites (epitopes) on hCG, its free subunits, and degradation products.

<table>
<thead>
<tr>
<th>Epitope</th>
<th>Descriptions</th>
<th>Reactivity</th>
<th>Nonnick. hCG</th>
<th>Nicked hCG</th>
<th>hCG-terminal</th>
<th>Nonnick. free β</th>
<th>Nicked free β</th>
<th>β-core fragment</th>
<th>Regular or large free α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hCG dimer</td>
<td>Site at subunit interface on nonnick. hCG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-common β1</td>
<td>Mutual site on hCG, free β, and β-core</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-common β2</td>
<td>Separate mutual site on hCG and free β (β-core?)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>±^a</td>
</tr>
<tr>
<td>Anti-β C-terminal</td>
<td>Mutual site on hCG and free β only</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-common α</td>
<td>Mutual site on hCG and free α</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free β</td>
<td>Free subunit-specific site, hidden on hCG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-nonnick. free β</td>
<td>Free subunit-specific site, close to nicking site</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free β + β-core</td>
<td>Mutual site on free β and β-core fragment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-β-core fragment</td>
<td>β-core fragment-specific site, hidden on free β</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free α</td>
<td>Free subunit-specific site, hidden on LCG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

^a Some anti-common β antibodies also recognize β-core fragment.

Cole, LA. *Clin Chem* 1997;43:2233-2243
<table>
<thead>
<tr>
<th>Epitope</th>
<th>Description</th>
<th>Nonnicked hCG</th>
<th>Nicked hCG</th>
<th>hCG-terminal</th>
<th>Nonnicked free β</th>
<th>Nicked free β</th>
<th>β-core fragment</th>
<th>Regular or large free α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hCG dimer</td>
<td>Site at subunit interface on nonnicked hCG</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-common β1</td>
<td>Mutual site on hCG, free β, and β-core</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Anti-common β2</td>
<td>Separate mutual site on hCG and free β (β-core?)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>±a</td>
<td></td>
</tr>
<tr>
<td>Anti-β C-terminal</td>
<td>Mutual site on hCG and free β only</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-common α</td>
<td>Mutual site on hCG and free α</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β</td>
<td>Free subunit-specific site, hidden on hCG</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-nonnicked free β</td>
<td>Free subunit-specific site, close to nicking site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-free β + β-core</td>
<td>Mutual site on free β and β-core fragment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-β-core fragment</td>
<td>β-core fragment-specific site, hidden on free β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Anti-free α</td>
<td>Free subunit-specific site, hidden on LCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

* Some anti-common β antibodies also recognize β-core fragment.
CAP Survey (2005)
AT THE HOSPITAL I HAD TO TAKE A PREGNANCY TEST—A WRITTEN PREGNANCY TEST.

1. How many babies are born every minute?
Qualitative Assays

- All can be performed with urine (waived) and some with serum (moderately complex)

- Majority of current tests are immunochromatographic
Qualitative Assays

Anti-β

Anti-α

Anti-Ab

Test zone

Control zone
Qualitative Assays

Anti-β

Anti-α

Anti-Ab

αβαβ

αβαβ

αβαβ
Variation Among Qualitative Assays

• Used for pregnancy detection so are designed to detect dimeric hCG isoforms

• Some detect additional, unexpected isoforms
Case Report

- 24-year-old female with endometrial adenocarcinoma presents to clinic to begin radiation therapy
- Reports being sexually assaulted 2 weeks prior
- Serum hCG of 56 IU/L so no therapy received
- Follow-up hCG tests
 - 4 weeks later: 45 IU/L
 - 6 weeks later: 60 IU/L
- False-positive hCG?
Qualitative Serum and Urine hCG Results From Different Assays

<table>
<thead>
<tr>
<th>Device Name (Manufacturer)</th>
<th>Serum</th>
<th>Urine</th>
<th>hCG Detection Limits in Serum/Urine (mIU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sure-Vue (Fisher Healthcare, Houston, TX)</td>
<td>Negative</td>
<td>Positive</td>
<td>10/20</td>
</tr>
<tr>
<td>Poly-Stat (Polymedco, Cortlandt Manor, NY)</td>
<td>Negative</td>
<td>Negative</td>
<td>20/20</td>
</tr>
<tr>
<td>QuickVue (Quidel, San Diego, CA)</td>
<td>Negative</td>
<td>Positive</td>
<td>25/25</td>
</tr>
<tr>
<td>Signify (Genzyme Diagnostics, Cambridge, MA)</td>
<td>Negative</td>
<td>Negative</td>
<td>20/20</td>
</tr>
</tbody>
</table>

hCG, human chorionic gonadotropin.

*Performed on week 10 samples (Table 1).

†To calculate Système International units for serum values (IU/L), multiply by 1.0.

hCG Results From Different Quantitative Assays

<table>
<thead>
<tr>
<th>Sample</th>
<th>DPC Immulite</th>
<th>DPC Free beta</th>
<th>Nichols Advantage ITA</th>
<th>Intact hCG Dimer</th>
<th>Nicked hCG</th>
<th>β Core Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>165</td>
<td>155</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>ND</td>
</tr>
<tr>
<td>Urine</td>
<td>683</td>
<td>249</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1,360†</td>
</tr>
</tbody>
</table>

hCG, human chorionic gonadotropin; ND, not done.

*Performed on week 10 samples (Table 1). All results are in mIU/mL; to calculate Système International units for serum values (IU/L), multiply by 1.0. DPC Immulite and DPC Free beta from Diagnostic Products, Los Angeles, CA; and the Nichols Advantage ITA, Nichols Institute Diagnostics, San Clemente, CA.

†The β core fragment is detected only partially by the DPC Immulite assay.

Qualitative hCG Device

<table>
<thead>
<tr>
<th></th>
<th>Sure-Vue</th>
<th>Clinitest</th>
<th>QuickVue+</th>
<th>Osom</th>
<th>hCG Combo</th>
<th>ICON II</th>
<th>Elecsys (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Ab</td>
<td>anti-α</td>
<td>anti-α hCG dimer</td>
<td>proprietary</td>
<td>anti-α</td>
<td>anti-α</td>
<td>anti-α</td>
<td>anti-β</td>
</tr>
<tr>
<td>Label Ab</td>
<td>anti-β hCG dimer</td>
<td>anti-β</td>
<td>anti-β</td>
<td>anti-β</td>
<td>anti-β</td>
<td>anti-β</td>
<td>anti-β</td>
</tr>
<tr>
<td>Intact hCG</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
<tr>
<td>hCGα</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>hCGβ</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Neg</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
<tr>
<td>hCGβn</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Neg</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
<tr>
<td>hCGβcf</td>
<td>Neg</td>
<td>Pos (weak)</td>
<td>Pos</td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
<td>Neg</td>
</tr>
</tbody>
</table>
Diagnosing Pregnancy – Home Tests

“More than 99% accurate when used on the day of the expected period”

“Use as early as 4 days before your expected period.”

“Test anytime of day. You do not have to use the first morning urine.”
Diagnosing Pregnancy – Home Tests

- 221 women planning to conceive kept menstrual diaries and froze daily urine for later analysis (151 pregnancies)

- Quantitative hCG determined by high-sensitive assay (0.13 IU/L detection limit)
 - Onset of pregnancy defined as earliest day of sustained hCG elevation

- 90% of pregnancies occurred by the day of the expected period
 - Detecting 99% of pregnancies required +10 days

Wilcox, et al., JAMA 2001;286:1759-1761
Ectopic Pregnancy

• Extrauterine implantation of blastocyst
 – 98% occur in fallopian tube

• Incidence is estimated at 2% of all pregnancies

• Leading cause of maternal mortality in the 1st trimester
 – 1 death per 2000 ectopic pregnancies

• Diagnostic tools
 – Serial hCG (prolonged doubling time, 87% sensitive)
 – Transvaginal ultrasound (90% sensitive)
Ectopic Pregnancy

- **hCG**
 - <1500 IU/L
 - **Serial hCG**
 - Normal increase
 - >1500 IU/L
 - Ultrasound
 - IUP
 - No IUP
 - Surgical management
 - IUP
 - Abnormal increase
 - Surgical management
 - Ultrasound
 - IUP
 - No IUP
 - Surgical management
 - >1500 IU/L
 - Ultrasound
 - No IUP
 - Surgical management

Maternal Serum Screening for Down’s Syndrome

- **2nd trimester screening (16-18 weeks)**
 - Triple screen: hCG, AFP, uE3
 - Quadruple screen: hCG, AFP, uE3, Inhibin A

- **1st trimester screening (11-13 weeks)**
 - hCG or free beta subunit, PAPP-A, nuchal translucency (ultrasound)

UpToDate, 2007
Gestational Trophoblastic Disease (GTD)

- Heterogeneous group of interrelated lesions derived from an aberrant fertilization event
 - Hydatidiform mole (partial and complete)
 - Persistent/invasive GTD
 - Choriocarcinoma

- All produce hCG and hormone is used in diagnosis and to monitor response to therapy

- Very responsive to chemotherapy and treatment is most often single-agent therapy with methotrexate
hCG in GTD

- Concentrations may exceed 100,000 IU/L
- Assess tumor mass
 - Serum concentration correlates with the number of viable tumor cells
- Monitor therapy
 - Successful treatment leads to progressive decline of hCG, usually within 14 weeks
 - A rise or plateau suggests recurrence or persistence of disease
- Detect recurrence
 - ACOG recommends f/u hCG for 6 months

Schlaerth et al., Obstet Gynecol 1981;58:478
Persistent Low hCG

- Low concentrations of hCG that persist for months to years
 - hCG often <50 IU/L

- Uncommon event attributed to
 - False-positives
 - Pituitary hCG
Persistent Low hCG – The Clinical Problem

• hCG tests performed on women prior to interventions that could harm fetus
 – hCG cutoff of <5.0 IU/L used for pregnancy diagnosis

• Standardized protocols result in the use of hCG testing even in women who are unlikely to be pregnant (e.g. menopausal, hysterectomy)

• Positive results create clinical fusion, may delay needed therapies, or result in unnecessary therapy
Jury awards $15.5 million to woman misdiagnosed with cancer. UW and drug company share blame

Seattle Post-Intelligencer
Saturday, June 30, 2001
False-positive hCG

• Patient consulted doctor about irregular bleeding between menstrual periods
 – Positive serum hCG but no apparent intra-uterine pregnancy

• 11 month ordeal to identify cause

• Treatments
 – Laparoscopy for presumed ectopic pregnancy (none)
 – D&C (normal)
 – Chemotherapy, single and multi-agent (no hCG change)
 – Hysterectomy (no hCG change)
 – Surgery for removal of lung nodules found by CT (no disease)

• hCG eventually found to be false-positive due to interfering antibody in patient’s serum

Interfering Antibodies

Heterophile antibodies
- Antibodies with broad but weak reactivity for many different antigens
- Naturally occurring and originate from early stages of B-cell immunoglobulin synthesis
- Distinct from antibodies produced against specific animal immunoglobulins

Human anti-animal antibodies (HAAA)
- Produced after exposure to a defined antigen
- Exposure to therapeutic animal immunoglobulin or pharmaceutical agents derived from animal sources
- Immunogen is often unknown and its source remains unclear
- Human anti-mouse antibody (HAMA) is the most common HAAA
Mechanism of Interference - Positive

Real hCG present

Interfering antibody cross-links reagent antibodies

Falsely increased result
Mechanism of Interference - Negative

Real hCG present

Interfering antibody binds only 1 reagent antibody and prevents binding of hCG

Falsely decreased result
Detection

• Suspicion of interfering antibodies should be high when immunoassay results are inconsistent with the clinical scenario.

• Lab personnel are frequently unaware of clinical condition of patient
 – Difficult for lab to identify independently.

• What to do when asked “could this result be falsely increased?”
Urine hCG

- Real hCG should be detectable in the urine
- Antibodies too large to be filtered by kidney
- Negative urine hCG suggests interfering antibody present
Serial Dilution

- Interfering antibodies are reactive against the assay reagents and not the measured analyte.

- Serial dilution of specimen may not produce the expected linear response.
Different Assay

- Repeat test using an immunoassay that utilizes antibodies produced from a different animal species

- Not fool-proof as some interfering antibodies are not species-specific
 - May cross react with multiple animal species and interfere with multiple assays
Blocking Agents

• Remove interfering antibody through use of material that binds to it
 – Substantial change in concentration after use suggests interfering antibody present

• Non-immune globulin from the same species of animal used to produce the assay antibodies

• Effectiveness depends on interfering antibody class, specificity, and concentration

• Immunoassay reagents often contain blocking agents
Pituitary hCG

- First reported 30 years ago
- Gonadotrope cells of pituitary gland produce small amounts of hCG
Pituitary hCG

- First reported 30 years ago
- Gonadotrope cells of pituitary gland produce small amounts of hCG
Pituitary hCG –
The Clinical Problem

• JP is a 49-year-old female with ESRD secondary to polycystic kidney disease. She has been on peritoneal dialysis for 2 years and is admitted for a deceased-donor renal transplant.

• Pre-transplant screening reveals an hCG of 12 IU/L.

• The renal team calls to ask what this means.
1. Determine upper hCG limit in peri- and post-menopausal women

2. Evaluate the utility of serum FSH to assist in the interpretation of a positive hCG result

hCG in Aging Women

• 4 cohorts
 – Pregnant (\geq18 y)
 – Non-pregnant, pre-menopausal (18 – 40 y)
 – Non-pregnant, peri-menopausal (41 – 55 y)
 – Non-pregnant, post-menopausal (>55 y)

• No history of trophoblastic disease or ectopic pregnancy

• Menopause status defined by age alone

hCG is Correlated with Age

hCG Reference Intervals by Age

hCG >5.0 IU/L
Peri-menopausal, N=3
Post-menopausal, N=16

Table 1. hCG concentration ranges and the 97.5 percentile values for the nonpregnant cohorts in the study.

<table>
<thead>
<tr>
<th>Nonpregnant cohort</th>
<th>n</th>
<th>hCG range, IU/L</th>
<th>97.5 percentile, IU/L</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausal, 18–40 years</td>
<td>240</td>
<td><2.0 to 4.6</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Perimenopausal, 41–55 years</td>
<td>240</td>
<td><2.0 to 7.7</td>
<td>8</td>
<td>4.8</td>
</tr>
<tr>
<td>Postmenopausal, >55 years</td>
<td>240</td>
<td><2.0 to 13.1</td>
<td>14</td>
<td>7.7</td>
</tr>
</tbody>
</table>

a Compared with the nonpregnant premenopausal cohort.
b Compared with the nonpregnant premenopausal and nonpregnant perimenopausal cohorts.

FSH vs. Age

FSH by Cohort & hCG Status

- FSH cutoff of 20 IU/L differentiates hCG of pregnancy from pituitary hCG

Interpreting Low hCG Results

hCG 5.0 – 14.0 IU/L

Age 18-40 y

Age 41-55 y

Age >55 y

Measure serum FSH

FSH ≤20 IU/L

Possible pregnancy

FSH >20 IU/L

Pregnancy unlikely
Study Limitations

• Analytical variation among hCG assays
• Interfering antibodies
• Age as criteria for menopause status
• Estrogen therapy
• 3 peri-menopausal patients with low pos hCG
 – Need to validate FSH of 20 cutoff in peri-menopausal group
Follow-up Investigation

• Validate the 20 IU/L FSH cutoff for excluding pregnancy in 41-55 yo with hCG 5-14 IU/L

• 100 patients desired
 – Need ~25,000 hCG results
 – 7 medical center laboratories
 – 80% of hCG and FSH assays represented

Inclusion/Exclusion Algorithm

MD-ordered hCG
N=39,742

Female sex
N=4,415 (11%)

Excluded

Male sex
OR
Female ≤40 or ≥55 y
N=35,327 (89%)

Female sex
41 – 55 y
N=4,415 (11%)

Excluded

hCG ≤5 or ≥14 IU/L
N=4,256 (96%)

Chart available
For review
N=100

hCG 5 – 14 IU/L
N=159 (3.6%)

Excluded

Chart not available
OR
QNS for FSH
N=59

Results

- 77 hCG not of placental origin
- 23 hCG of placental origin
 - 17 resolving abortion/miscarriage
 - 4 GTD
 - 2 early pregnancies

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 IU/L</td>
<td>83%</td>
<td>84%</td>
</tr>
<tr>
<td>45 IU/L</td>
<td>100%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Fig. 2. Scatter plot of hCG vs FSH concentrations. Open circles represent nonplacental hCG; n = 77. Closed circles represent placental hCG; n = 23. The dashed line represents a FSH cutoff of 45 IU/L.

Summary

• hCG is a heterogeneous molecule that exists as numerous isoforms.

• hCG assays show considerable variability in the isoforms of hCG that they detect.

• There is a biological limit regarding the early detection of urinary hCG in pregnancy.

• Serum hCG is useful in conjunction with ultrasound for the diagnosis of ectopic pregnancy.

• hCG is an essential biomarker in screening for Down’s syndrome and as a monitor of GTD.
Summary

• False-positive hCG tests are infrequently encountered but can have significant consequences if not recognized.

• Serum hCG increases with age in non-pregnant women.

• A cutoff of higher than the often used 5 IU/L should be utilized when interpreting hCG results in women >55 years of age.

• Pregnancy is unlikely in peri-menopausal women 41-55 years of age with an hCG between 5.0 and 14.0 IU/L if serum FSH is >45 IU/L.
Case Follow-up

49 yo renal transplant patient with hCG of 12 IU/L

• FSH = 215 IU/L
 – More consistent with menopausal status than pregnancy

• Renal transplant was performed
Acknowledgements

UNC
Jennifer Snyder, PhD
Carlie Sigel, MD
Pamela Groben, MD

Emory University
Corinne Fantz, PhD

Marshfield Clinic
Carmen Wiley, PhD

Washington University
Shannon Haymond, PhD
Curt Parvin, PhD
Ann Gronowski, PhD

University of Washington
Mark Wener, MD

Johns Hopkins University
Lori Sokoll, PhD