Importance of Clinical Information for Optimal Genetic Test Selection and Interpretation

Chris Miller, MS, LCGC
ARUP Laboratories
Learning Objectives

• Explain the relevance of clinical information for genetic testing
• Describe the clinical and financial importance of pre-analytical genetic test review
• Describe the significance of clinical information in genetic test interpretation
• Explain the role genetic counselors can play in the pre and post analytical test review
2009 CDC Report

- Published recommendations for best practices in molecular genetic testing for heritable diseases
- More errors occur in pre and post analytic phases than in the analytic process itself
- Inappropriate test selection underlies many pre analytic errors
- Study of APC gene testing found testing unwarranted in 17% of cases
- Labs should:
 - Help HCPs with appropriate test selection
 - Instruct HCPs on patient information needed for proper testing and interpretation
 - Be available for consultations with HCPs for test selection/interp
Additional Concerns in Preanalytic Phase

• Informed consent - including potential implication of results for other family members
• Establishing policies to assess and correct problems
Analytic Errors

- Already regulated by CLIA
- Rare specimen handling and analysis errors occur in 0.06 to 0.12% of samples with 100,000 tests
Post Analytic Errors

• Errors in report preparation and interpretation
 – Result from HCP’s poor understanding of limitations of molecular genetic tests and proper interpretation

• Problems with content, completeness and interpretation of reports

Test Order Review at ARUP Labs

- All heritable molecular sequencing and deletion/duplication tests
- Selected cytogenetic and biochemical assays
- GCs collected test review data between April 2010 through Dec 2011 (21 months) - excluded biochemical and cytogenetic assays
Health Care Savings from Molecular Test Modifications

• 86 tests modified /month (includes test cancellations and additions)

• Average Cost Savings/ month > $60,000 (specifically from cancelation of erroneous tests)

• Savings to hospitals, insurers and patients

$720,000 dollars annually
Misorders Comprise ~28% of Complex Molecular Genetic Tests

- 35% Cancelled incorrect test ordered correct one
- 26% Cancelled incorrect test but could not order correct one
- 14% Cancelled full gene sequencing & added targeted panel
- 13% Cancelled sequencing & ordered familial mutation
- 7% Cancelled incorrect and facilitated send out
- 5% Cancelled duplicate test order
35% Cancelled Incorrect Test and Ordered Correct One

- Ordered HHT FGA- (hereditary hemorrhagic telangiectasia) and wanted HH Panel (hereditary hemochromatosis)
- Ordered alpha globin sequencing but needed alpha thalassemia 7 deletion panel
- Ordered Rett syndrome FGA (MECP2) and wanted RET (MEN2)
- Ordered Lynch syndrome (MSH2) but needed Lynch syndrome (MSH6)
26% Cancelled Incorrect Test but Could not Change it to Correct One

- GALT testing ordered when actually wanted *Aspergillus* Galactomannan
- Factor 8 or 9 gene sequencing when actually desired factor 8 or 9 activity
14% Cancelled Full Gene Sequencing & Added Targeted Panel

- CFTR full gene sequencing ordered on a routine OB patient
- ACMG recommends 23 mutation panel
- Sequencing will detect many VUS
- TAT with sequencing much longer (weeks vs days with panel)
- Cost is more than 10 times higher
13% Cancelled Full Gene Sequencing & Ordered Familial Mutation

• Common mistake especially with AD and XL disorders
 – RET, HHT, PTEN, F8, F9, Alport, FAP
 – Instead of Lynch syndrome MLH1, MSH2, MSH6 or PMS2 full sequencing - order targeted SEQ FSM
Other Misorders

• 7% Cancelled incorrect test and facilitated send out
 – Neurofibromatosis DD canceled; sequencing sent out
• 5% Cancelled duplicate test order
 – Detected same test previously performed
 – Rarely needed in genetic testing unless r/o sample switch or result does not correlate with symptoms
 – HCP usually could not locate previous results
Health Care Savings From Molecular Genetic Test Cancellations Alone

- Over $60,000 a month
- Approximately $720,000 savings annually
Top Tests Cancelled by Volume

- Cystic fibrosis sequencing and del/dup- 17%
- Alpha globin sequencing- 58%
- NF type 1, deletion/duplication- 87%
- Lynch syndrome gene sequencing/deldup- 8%
- Sequencing for known familial mutation- 12%
Performing Test Order Reviews

- Must have clinical history to understand why test was ordered
- Most labs performing molecular genetic tests request clinical information on test requisitions or consent forms
- ARUP creates custom patient history forms for each test
Helpful Information to Request

- Contact info for ordering HCP and practice type
- Patient symptoms
- Supporting laboratory results
- Family history
- DNA results of affected family members
- Test practitioner intended to order
PATIENT HISTORY FOR LYNCH SYNDROME/HNPCC TESTING

Patient Name ___________________________ Date of Birth _____/_____/______ Gender [] F [] M

Physician ___________________________ Physician Phone (______) __________ Practice Specialty _________________

Genetic Counselor ___________________________ Counselor Phone (______)

Patient’s Ethnicity (check all that apply)
[] African American [] Ashkenazi Jewish [] Asian [] Native American [] Caucasian
[] Hispanic [] Middle Eastern [] Other _________________

Has the patient been diagnosed with cancer? [] No [] Yes: (please specify all cancers and age of onset)
[] Cecal Colon (age_______) [] Gastric (age_______) [] Endometrial (age_______)
[] Ascending Colon (age_______) [] Pancreas (age_______) [] Ovarian (age_______)
[] Transverse Colon (age_______) [] Small Intestine (age_______) [] Rectal (age_______)
[] Descending Colon (age_______) [] Renal Pelvis (age_______) [] Brain (age_______)
[] Sigmoid Colon (age_______) [] Bladder (age_______) [] Sebaceous Gland (age_______)
[] Colon, unspecified region (age_______) [] Ureter (age_______) [] Other _________________ (age_______)

Microsatellite Instability (MSI) Testing
Result by PCR [] High [] Low [] Stable [] Indeterminant [] Unknown [] Not performed
Result by Immunohistochemistry (IHC)
[] Absent MLH1 [] Absent MSH2 [] Absent MSH6 [] Absent PMS2 [] Indeterminant [] Unknown [] Not performed

BRAF V600E mutation [] Positive [] Negative [] Unknown
MLH1 methylation [] Methylated [] Unmethylated [] Indeterminant [] Unknown

Has mismatch repair gene testing been previously performed on the patient? [] Yes [] No [] Unknown
If yes, please check completed test(s) and provide result below or attach report.
MLH1: [] Sequencing [] Deletion/Duplication Result: ________________________________
MSH2: [] Sequencing [] Deletion/Duplication Result: ________________________________
MSH6: [] Sequencing [] Deletion/Duplication Result: ________________________________
PMS2: [] Sequencing [] Deletion/Duplication Result: ________________________________
Has the patient had an allogeneic bone marrow or umbilical cord blood transplant? [] No [] Yes [] Unknown

Does the patient have a FAMILY HISTORY of cancer? [] Yes [] No [] Unknown
If yes, please attach PEDIGREE or specify the relationship(s) of affected family member(s) to the patient, the type(s) of cancer and age at diagnosis in each relative.

Has any affected family member had DNA testing for mismatch repair gene mutations? [] Yes [] No
If yes, please attach a copy of the relative’s DNA laboratory result (REQUIRED for familial mutation testing).

Circle the test you intend to order.

0051650 Lynch Syndrome, HNPCC (MLH1) Sequencing & Deletion/Duplication
0051654 Lynch Syndrome, HNPCC (MSH2) Sequencing & Deletion/Duplication
0051656 Lynch Syndrome, HNPCC (MSH6) Sequencing & Deletion/Duplication
0051737 Lynch Syndrome, HNPCC (PMS2) Sequencing & Deletion/Duplication
2001728 HNPCC/Lynch Syndrome Deletion/Duplication: For patients with negative MLH1/MSH2/MSH6/PMS2 sequencing results. Also order for familial MLH1, MSH2, MSH6 or PMS2 large deletion or duplication testing.
2001961 Familial Mutation Targeted Sequencing. Targeted sequencing for a MLH1, MSH2, MSH6, or PMS2 gene mutation previously identified in a family member. A copy of a relative’s DNA laboratory result is REQUIRED.
Ex. Lynch Syndrome MSH2 Sequencing and Deletion/Duplication Ordered

- No info provided
- Contact ordering HCP
- Learn that pt has a brother with Lynch sx
- Ask HCP to call pt and see if he can get records of brother’s DNA test result
- Learn that brother has MSH6 c.242G>A
- Change test to targeted sequencing for MSH6
Lessons from Lynch Case

• Wrong test would have been run wasting >$1000
• Interpretation would indicate no pathogenic mutations detected in gene
• Appropriate screening for individual at high risk for Lynch syndrome would not be offered
Ex 2. Cystic Fibrosis

- Autosomal recessive
- Two mutations in *CFTR* cystic fibrosis transmembrane regulator
- ACOG recommends CF mutation panel with 23 mutations be offered to OB patients
- Panel detection rate varies with ethnicity
 - Caucasian 89% African American 65%
 - Hispanic 73% Asian 55%
Ex 2; CFTR Sequencing

• 26 year old female
• No clinical info provided
• Ordering health care provider- OB/GYN
• Call HCP to document reason for testing
 – Routine OB screen; no symptoms or fam hx
• Cancel sequencing and order CF panel
• Cost savings >$1000
Ex 3. CFTR Sequencing

• Newborn with no clinical info provided
• Call HCP
• Learn that African American infant has an affected full brother
• Encourage getting a copy of brother’s DNA result
• F508/del exons 7-8
Infant at Risk for CF

- F508del would be detected by sequencing but expensive way to detect it (just need panel)
- Deletion of exons 7-8 would NOT be detected by sequencing; requires a del/dup test
- CFTR sequencing would have resulted in detecting only one of the infant’s two mutations delaying critical dx and treatment
- Also would have resulted in wasting >$1000
Ex 4; FBN1 Sequencing

- 1 year old asymptomatic male
- Contact primary care physician
- FOB has clinical dx of Marfan Sx but no molecular diagnostic confirmation
- Finding no FBN1 mutations would not rule out dx
- Extracted DNA and encouraged PCP to refer FOB to geneticist or test him for FBN1 mutation first
- FOB tested negative for FBN1 Seq and Dup/Del
- Cancelled test on his son
Hemophilia A

- Incidence 1 in 4000 male births
- Spontaneous joint or deep tissue bleeding
- F8 Deficiency
 - Severe; <1% activity
 - Moderate; 1-5% activity
 - Mild 6-35% activity
- F8 gene mutations
 - 51% Inversions
 - 43% Sequence Variants
 - 6% Large Del/dups
Factor 8 Sequencing

• 25 year old female
• Factor 8 sequencing is ordered
• Patient history shows; maternal uncle died of severe hemophilia A
• Cancel sequencing and order inversion with reflex to sequencing with reflex to del/dup
F8 Reflex Testing

- 5 year old mildly affected boy with factor 8 deficiency (10% of normal activity)
- Inversion, reflex to sequencing reflex to DD ordered
- Given mildly affected status; sequencing is best choice
Putting Test Review into Practice in Large Reference Laboratories

- Laboratory GCs can create custom patient history forms for tests performed in house
- Lab extracts DNA on specific tests being held for review
- GC reviews order for best test selection
 - Instructs lab to run as ordered
 - Cancels and reorders correct test
Hospital Send Out Lab Test Review

• Require ordering HCP to provide clinical information with test order/complete a patient history form

• If patient history is not provided with test order, determine where sample is being sent and print off proper form and call HCP for info

• Pathologist or GC should review genetic send out tests for accuracy and necessity
Genetic Counselors: Ideal Professionals to Review Send Outs

• GCs are Masters trained individuals with specialized training in clinical medical genetics
• It is a terminal degree
• NSGC 2006 Scope of Practice; Item 7 ….Order tests and perform clinical assessments in accordance with local state and federal regulations
• Most genetic tests ordered by HCPs with little formal education in genetics
Genetic Counselors

• In 2013, 27 US GC training programs have full ABGC accreditation; 3 in Canada
• ~3000 in practice
• ~80% of GCs work directly with patients
• ~10% work in diagnostic laboratories
Common Indications for GC Referral

- High risk pregnancies (abnormal MSS or U/S)
- Consanguinity
- High risk ethnic groups
- Infertility or infant death
- Birth defects or mental retardation
- Heritable disorders
- Psychiatric conditions
- Familial cancer
The Genetic Counseling Process

- Review medical records & research
- Draw medical pedigree
- Perform risk assessments
- Explain medical & scientific information
- Discuss disease management, treatment & surveillance options
- Review testing options
- Facilitate decision-making process
Use of Clinical Information for Accurate Test Interpretation

- Clinical info on patient
- Relevant family history
- Affected relative’s test results
Information for Proper Test Interpretation

- Why is testing being performed?
 - Carrier screening
 - Rule out classic or atypical disease
- Is there a family history? If Yes,
 - Is relative symptomatic?
 - Relationship of patient to relative?
 - Relative’s mutation(s)?
- What is the patient’s ethnicity?
Case Example

• CF Mutation Panel: Four day old female
• Single mutation identified (R553X)

• How should this be interpreted?
 – Symptomatic- suggest full gene sequencing?
 – Asymptomatic- infant is probably only a carrier?
Asymptomatic with Positive Family History

• Caucasian mother carries R553X; Hispanic father refused testing
• $1 \times \frac{1}{46} \times \frac{1}{4} = \frac{1}{184}$ prior risk to be affected
• Bayesian to calculate residual risk to be affected after R553X mutation identified
Bayesian Analysis Needed for Risk Interpretation

<table>
<thead>
<tr>
<th></th>
<th>Father Passed Mutation</th>
<th>Father did Not Pass Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Infant Affected)</td>
<td></td>
<td>(Infant Unaffected)</td>
</tr>
<tr>
<td>Prior</td>
<td>1/46 x 1/2 = 1/92</td>
<td>91/92</td>
</tr>
<tr>
<td>Conditional</td>
<td>27/100</td>
<td>1</td>
</tr>
<tr>
<td>Joint</td>
<td>27/9200</td>
<td>91/92</td>
</tr>
<tr>
<td>Posterior</td>
<td>27 / 9127 \sim 1 in 340</td>
<td>339/340</td>
</tr>
</tbody>
</table>
Asymptomatic; Has family history

- Caucasian
- Affected full brother is a compound heterozygote for R553X and F508del
- Reassuring interp- patient appears to be just a carrier
Symptomatic Asian/Caucasian

- Meconium ileus
- Asian/Caucasian
- No family history of CF

- Recommend CFTR sequencing with reflex to deletion/duplication testing
Prenatal Testing for CF Using Panel

- Result: F508del het
- Clinical Info: Caucasian couple; neither has undergone CF screening; no fam hx of CF; no fetal anomalies noted
- Bayesian analysis used to calculate risk for fetus to be affected
Bayesian Analysis

<table>
<thead>
<tr>
<th></th>
<th>Affected</th>
<th>Not Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Risk to Be Affected</td>
<td>1/2500</td>
<td>2499/2500</td>
</tr>
<tr>
<td>Condition of finding one mutation</td>
<td>1/5</td>
<td>1/25</td>
</tr>
<tr>
<td>Joint</td>
<td>1/12,500</td>
<td>2499/62,500</td>
</tr>
<tr>
<td>Posterior</td>
<td>1/500</td>
<td>499/500</td>
</tr>
</tbody>
</table>
Prenatal Diagnosis

- 28 year old Caucasian
- Echogenic bowel with dilated loops
- Result: F508del het
- Assuming a prior risk of 1 in 10
- Bayesian calculation indicates a 36% (1 in 2.8) risk for CF in fetus
Bayesian Analysis

<table>
<thead>
<tr>
<th></th>
<th>Affected</th>
<th>Not Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>1/10</td>
<td>9/10</td>
</tr>
<tr>
<td>Conditional</td>
<td>1/5</td>
<td>1/25</td>
</tr>
<tr>
<td>Joint</td>
<td>5/250</td>
<td>9/250</td>
</tr>
<tr>
<td>Posterior</td>
<td>5/14</td>
<td>9/14</td>
</tr>
</tbody>
</table>
MCAD Deficiency

- Autosomal recessive
- Inability to metabolize fat for energy
- May lead to sudden death
- One common mutation A985G is responsible for 90% of abnormal alleles
- Therefore, about 80% of affected individuals will be homozygous for the common mutation
Case 1: ACADM Panel

- 3 year old female
- One copy of A985G identified
- Clinical info:
 - Newborn brother just diagnosed with MCAD through newborn screening; compound heterozygote for A985G/1100del AGTT
- Interpretation: Pt is at least a carrier of MCAD and may be affected since 1100delAGTT is not tested on the panel
- Recommendation to add targeted sequencing
MCAD Case 2

- MCAD Pan and OA ordered on newborn girl
- MCAD Pan result: A985G het

- Clinical info: 3 year old full sibling died with GI illness and dehydration; found homozygous for A985G
- Interpretation: Patient is predicted to be unaffected carrier
Summary

• Reviewing genetic test orders results in significant cost-savings

• GCs are ideally trained to perform genetic test order reviews

• Clinical information is critical for test review and accurate result interpretation
Acknowledgements

• Erin Baldwin
• Kim Hart
• Patti Krautscheid
• Danielle LaGrave
• Amanda Openshaw
• Tanya Tvrdik
P.A.C.E.®/FL Password: GT031313

Go to www.aruplab.com/genetic-test and click on the P.A.C.E.®/FL Credit Redemption Link

Credit redemption for this webinar will be available through March 27, 2013

This webinar can be viewed after April 15, 2013 at www.arup.utah.edu where CME/SAM, P.A.C.E.® and Florida continuing education credit will be available.