#### Metabolic Syndrome

Bill Roberts, M.D., Ph.D. Professor of Pathology University of Utah

# Objectives

- Be able to outline the pathophysiology of the metabolic syndrome
- Be able to list diagnostic criteria for the metabolic syndrome
- Be familiar with laboratory tests useful for the diagnosis and monitoring of the metabolic syndrome

# Outline

- Introduction
- Pathophysiology
- Laboratory testing
- Chronic kidney disease
- Exercise
- Non-alcoholic fatty liver disease
- Conclusions

#### ★ Table 3

#### Partial Listing of Diseases/Conditions/Syndromes Afflicting Each Group of Individuals

| Children/Adolescents     | Baby Boomers             | Geriatrics               |
|--------------------------|--------------------------|--------------------------|
| Obesity                  | Obesity                  | Obesity                  |
| Diabetes                 | Diabetes                 | Diabetes                 |
| Hypertension             | Hypertension             | Hypertension             |
| Malignant neoplasms      | Malignant neoplasms      | Malignant neoplasm       |
| Cardiovascular diseases  | Cardiovascular diseases  | Cardiovascular diseases  |
| Nephritis and nephrosis  | Nephritis and nephrosis  | Nephritis and nephrosis  |
| Septicemia               | Septicemia               | Septicemia               |
| Chronic lower            | Chronic lower            | Chronic lower            |
| respiratory diseases     | respiratory diseases     | respiratory diseases     |
| Pneumonia/influenza      | Pneumonia/influenza      | Pneumonia/influenza      |
| Cerebrovascular diseases | Cerebrovascular diseases | Cerebrovascular diseases |
|                          | Substance abuse          | Substance abuse          |
|                          | Metabolic syndrome       | Stroke                   |
|                          | Polycystic ovary(ies)    | Dementia/Alzheimer       |
|                          | Lung disease(s)          | Prostate disease         |
|                          | Anxiety                  | Osteoporosis             |
|                          | Depression               | Post-menopause           |
|                          | AIDS                     | Pain perception          |
|                          | Gout                     | Overactive bladder       |
|                          | Chronic liver disease(s) | Vitamin B12 deficiency   |
|                          |                          | Acute alcoholism         |
|                          |                          | Incontinence             |

# Metabolic Syndrome

- What is it?
  - Constellation of clinical and laboratory findings resulting from central obesity and insulin resistance
- aka cardiometabolic syndrome, dysmetabolic syndrome X, syndrome X
- 47 to 60 million Americans have metabolic syndrome
- At increased risk for:
  - Diabetes mellitus
  - Coronary heart disease
  - Stroke

# **Diagnostic Criteria**

| Criterion   | NCEP ATP III  | WHO 1999                | IDF 2005              |
|-------------|---------------|-------------------------|-----------------------|
| Central     | W >40 in M    | W:H >0.9 M              | >37 in M *            |
| obesity     | W >35 in F    | W:H >0.85 F             | >31 in F              |
| Fasting     | >100 mg/dL    | <u>&gt;</u> 120 mg/dL * | ≥100 mg/dL            |
| glucose     |               |                         |                       |
| Blood       | >130/85 or Rx | <u>&gt;</u> 140/90 or   | ≥130/85 or Rx         |
| pressure    |               | Rx                      |                       |
| Fasting TGs | ≥150 mg/dL    | <u>&gt;</u> 150 mg/dL   | <u>&gt;</u> 150 mg/dL |
| HDL-C       | <40 mg/dL M   | <u>&lt;</u> 35 mg/dL M  | <40 mg/dL M           |
|             | <50 mg/dL F   | <u>&lt;</u> 39 mg/dL F  | <50 mg/dL F           |
|             | 11 1 1 0      | $\mathbf{O}$            |                       |

WHO microalbuminuria  $\geq$  30 mg/g

#### Controversy about Metabolic Syndrome

- AHA contends recognizing metabolic syndrome will help clinicians prevent CVD
- ADA contends metabolic syndrome does not exist as a medically definable syndrome
  - Clinical treatment of syndrome is no different than treating individual components
  - Each risk factor has different degrees, everyone with metabolic syndrome does not have the same risk

#### Metabolic Syndrome as Predictor of CVD

- In the Framingham study, metabolic syndrome alone predicted 25% of all new onset CVD
- In the absence of diabetes, metabolic syndrome did not raise 10 year risk of CVD to >20%--the threshold for ATP III's CHD risk equivalent
- Ten year risk in men with metabolic syndrome was 10-20%
- Ten year risk for women was lower but they were younger

#### Factors Contributing to Cardiometabolic Risk



Brunzell JD, et al. Diabetes Care 2008;31:811-22.

#### Obesity in the US



Year

# Obesity and Abnormal Body Fat Distribution

- Obesity epidemic mainly responsible for rising prevalence of metabolic syndrome
- Obesity contributes to
  - Hypertension
  - Elevated serum cholesterol (VLDL)
  - Decreased serum HDL-cholesterol
  - Hyperglycemia

#### **Abdominal Obesity**

- Form of obesity most strongly associated with metabolic syndrome and CVD risk
- Presents clinically as increased waist circumference
  - BMI can also be used, but may be less specific
  - Weight lifters have increased BMI, but usually not abdominal obesity

### Products of Excess Adipose Tissue

- Non-esterified fatty acids (NEFA)
  - Overloads muscle and liver with lipid, enhances insulin resistance
- PAI-1
  - Contributes to pro-thrombotic state
- Adiponectin
  - Low adiponectin (seen in obesity) correlate with worsening of metabolic risk factors
- Pro-inflammatory cytokines
  - Increase CRP, fibrinogen, and other acute phase reactants



de Ferranti S & Mozaffarian D, Clin Chem 2008;54: 945-55

#### Insulin Resistance

- Present in majority of people with metabolic syndrome
- Correlates with CVD risk
- Mechanisms underlying link to CVD uncertain
- Insulin resistance may manifest as glucose intolerance
- Many investigators place a greater priority on insulin resistance than obesity
- Insulin resistance increases with increasing body fat content
- A broad range of insulin sensitivities exist at any given level of body fat

#### Insulin Resistance and BMI

- Body mass index (BMI) <u>></u>30 kg/m<sup>2</sup> is associated with postprandial hyperinsulinemia
- BMI 25 to 29.9 show spectrum of insulin resistance
- BMI <25 kg/m<sup>2</sup> is associated with insulin resistance in some populations (South Asians)
- High prevalence of DM and premature CVD in South Asians associated with primary insulin resistance
- Weight gain enhances insulin resistance in primary insulin resistance

# **Consequences of Hyperinsulinism**

- Premature atherosclerosis
- Elevated blood pressure
- Hyperandrogenism—ovarian androgen secrection
- Hyperuricemia
- Major cause of PCOS
- Dylipidemia
  - Hypertriglyceridemia
  - Low HDL-cholesterol
  - Increased LDL particle number
- Fatty infiltration of liver (NAFL→NASH→cirrhosis→HCC)

#### Metabolic Syndrome Predicts Diabetes

- Risk of new onset diabetes mellitus examined in Framingham cohort
- In men and women the presence of metabolic syndrome was highly predictive
- Nearly half of population attributable risk for diabetes was explained by the presence of ATP III metabolic syndrome

## Prevention/Delay of Type 2 DM

- Patients with IFG or IGT
  - Weight loss of 5-7% body weight can prevent DM
  - Increased physical activity 150 min/week walking
- In addition to lifestyle counseling, metformin may be considered if both
  - Combined IFG and IGT plus other risk factors
  - Obese (BMI >30 kg/m<sup>2</sup>) and under 60 yrs old

# Atherogenic Dyslipidemia

- Elevated fasting triglycerides concentration
- Low HDL-cholesterol concentration
- Increased VLDL & remnant lipoprotein concentrations
- Increased apolipoprotein B concentration
- Increased number of LDL particles
- Small LDL particles
- Small HDL particles

#### Lipoprotein Metabolism in Metabolic Syndrome



Adiels M et al. Arterioscler Thromb Vasc Biol 2008;28:1225-1236

#### **Elevated Blood Pressure**

- Associated with obesity
- Commonly occurs in insulin resistance
- Multifactorial in origin
- Arterial stiffness contributes to systolic hypertension in the elderly

#### **Pro-inflammatory State**

- Recognized clinically as elevated C-reactive protein (CRP)
- Commonly present in metabolic syndrome
- One cause is obesity—adipose tissue release IL-6 which stimulates the liver to produce CRP

#### JUPITER Trial

- LDL-C <130 mg/dL
- CRP <u>></u>2 mg/L
- Randomized to a statin or placebo
- Followed for 3 years
- Trial ended early due to benefits of statins in this group
  - Decreased rate of first major cardiovascular event
  - Decreased rate of death from any cause

Ridker PM et al. NEJM 2008;359:2195-2207.

#### Hs-CRP and Metabolic Syndrome

- 14,719 women followed for 8 years, 24% had MS
- Outcomes—MI, CVA, CABG/PTCA, cardiac death
- CRP strongly correlated with number of MS criteria
  0.7, 1.1, 1.9, 3.0, 3.9, 5.8 mg/L median CRP for 0-5 MS criteria
- At all levels of MS severity, CRP added information
  - CRP <3 mg/L 3.4 per 1000 incidence of event</li>
  - CRP >3 mg/L 5.9 per 1000 incidence of event
- CRP increases PAI-1 expression in aortic endothelial cells

#### Useful Laboratory Tests

- Apolipoprotein B
- Creatinine
- Fasting triglycerides
- Fasting glucose
- HDL-cholesterol
- Hs-CRP
- LDL-cholesterol
- LDL particle number
- Non-HDL cholesterol
- Urine albumin

# Lipoprotein Subclasses and MS

- Subjects with insulin resistance/metabolic syndrome tend to have dyslipidemia:
  - Increased large VLDL particle concentrations
  - Increased small LDL particle concentrations
  - Decreased large HDL particle concentrations
- Small dense LDL particles (B phenotype) is associated with increased cardiovascular risk
- The apolipoprotein B (apo B) concentration reflects number of LDL particles
- Treatments targeting this dyslipidemia may be beneficial

### Lipoprotein Management

- LDL-cholesterol
- LDL particle number
  - Better predictor than LDL-C
  - More data needed across ethnicities and ages
- Non-HDL-cholesterol
  - Better predictor than LDL-C
  - Useful in hypertriglyceridemia as secondary target
- ApoB-100
  - Single molecule in each atherogenic particle
  - Better predictor than LDL-C

#### Lipid Treatment Goals

|                                                                     | LDL-C<br>(mg/dL) | Non-HDL-<br>C (mg/dL) | ApoB<br>(mg/dL) |
|---------------------------------------------------------------------|------------------|-----------------------|-----------------|
| 1) Known CVD or                                                     | <70              | <100                  | <80             |
| 2) DM plus one or more<br>additional CVD risk<br>factors            |                  |                       |                 |
| 1)No DM or known CVD<br>but 2 or more additional<br>risk factors or | <100             | <130                  | <90             |
| 2) DM but no other major CVD risk factors                           |                  |                       |                 |

Brunzell JD et al. Diabetes Care 2008;31:811-22.

#### Chronic Kidney Disease

- The persistent and usually progressive reduction in glomerular filtration rate (GFR less than 60 mL/min/1.73 m<sup>2</sup>), and/or
- Albuminuria (more than 30 mg of urinary albumin per gram of urinary creatinine)

#### Cardiovascular Disease is Linked to CKD

- Annual mortality from CVD is increased 10 100 times with kidney failure
- Risk of CVD is increased 1.4 2.05 times with creatinine >1.4 - 1.5 mg/dL
- Risk of CVD is increased 1.5 3.5 times with microalbuminuria >30 mg/g

#### Who is at Risk for Chronic Kidney Disease?

- Diabetes and high blood pressure are the leading causes of kidney failure.
- Individuals with a family history of kidney failure are also at risk.
- Chronic kidney disease may also result from:
  - Hereditary factors, such as polycystic kidney disease (PKD)
  - A direct and forceful blow to the kidneys
  - Prolonged consumption of some over-the-counter painkillers that combine aspirin, acetaminophen, and other medicines such as ibuprofen

#### Kidney Disease Prevalence Increases with Age



Coresh J, et al. JAMA 2007;298:2038-47.

#### Limitations of MDRD eGFR

- Validated for adults 18-70 years of age
- Not validated for hospitalized patients
- Not as accurate for eGFR >60 mL/min/1.73 m<sup>2</sup>
- Not as accurate when patient's basal creatinine production is very abnormal
  - Patients of extreme body size or muscle mass (e.g., obese, severely malnourished, amputees, paraplegics or other muscle-wasting diseases)
  - Unusual dietary intake (e.g., vegetarian, creatine supplements).

# Urinary Albumin/Creatinine Ratio

- A single cutoff (30mg/g) is used
- Age, gender, and race may affect cutoff
- No uniformity in sample type
  - First morning void vs. true random
  - Diurnal, postural, exercise influences
  - Sample handling
    - Non-specific binding to collection container
    - Degradation during storage and freeze-thaw

# Who should be Tested for CKD?

- Microalbumin and eGFR
  - All individuals with hypertension—at diagnosis and every
    3 years if normal
  - Diabetes mellitus—every year
  - Family history of CKD, every 3 years if normal
  - Those with CVD or increased risk of CVD
- eGFR
  - All individual >65 years old

#### Exercise and the Metabolic Syndrome

- Regular exercise can help prevent diabetes mellitus
- Exercise can:
  - Lower blood glucose
  - Improve insulin action
  - Contribute to weight loss
  - Reduce risk for cardiovascular disease
- Sedentary lifestyles linked to 23% of deaths from heart disease and diabetes mellitus
- 30 minutes/day of walking can be beneficial
- Strength and endurance training can both be beneficial

#### Effects of Lifestyle Modifications on Metabolic Syndrome

| Metabolic Syndrome Component   | Effect of Regular Exercise <sup>a</sup> | Effect of Chronic Caloric Restriction <sup>b</sup> |
|--------------------------------|-----------------------------------------|----------------------------------------------------|
| Waist circumference, cm (%)    | −3 to −7 (6)                            | -4 to -7 (-6)                                      |
| Triglycerides, mmol/L (%)      | -0.21 (-12)                             | -0.12 (-6)                                         |
| HDL cholesterol, mmol/L (%)    | +0.05 (+4)                              | +0.07 (+6)                                         |
| Fasting plasma glucose, mM (%) |                                         |                                                    |
| Nondiabetic subjects           | Negligible                              | Negligible                                         |
| Diabetic subjects              | -1.5 (-15)                              | -1.2 (-15)                                         |
| Blood pressure, mmHg           |                                         |                                                    |
| Systolic                       | -4                                      | -5                                                 |
| Diastolic                      | -3                                      | -4                                                 |

Moderate intensity exercise 3-5 days/wk, 30-60 min/day Modest daily caloric restriction (500-700kcal)

Janiszewski PM et al Am J Lifestyle Med 2008;2:99-108

#### Non-alcoholic Fatty Liver Disease (NAFLD)

- Nearly one third of American adults
- 70% of patients with diabetes mellitus
- Central adiposity and insulin resistance contribute in both men and women
- Can progress to non-alcoholic steatohepatitis, cirrhosis, fibrosis, and hepatocellular carcinoma

#### Diagnosis of NAFLD

- LFTs
  - Mild elevations of ALT and GGT
- Ultrasound
- CT
- MRI
- Liver biopsy—definitive diagnostic test

### Conclusions

- CVD is the primary clinical outcome of metabolic syndrome
- ATP III criteria identify patients at increased risk for CVD
- Metabolic syndrome confers increased risk for DM
- The liver plays a central role in the metabolic syndrome
- Therapeutic lifestyle changes with emphasis on exercise and weight reduction constitute first line therapy

#### **General References**

- Grundy et al. Definition of metabolic syndrome. Circulation 2004;109:433-8.
- Executive Summary of the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (ATP III).
- JAMA 2001;285:2486-97. Daniels SR et al. Lipid screening and cardiovascular health in children. Pediatrics 2008;122:198-208.
- NKDEP web site: nkdep.nih.gov/